BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 24727893)

  • 1. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition.
    Bonora M; Wieckowski MR; Chinopoulos C; Kepp O; Kroemer G; Galluzzi L; Pinton P
    Oncogene; 2015 Mar; 34(12):1475-86. PubMed ID: 24727893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition.
    Bonora M; Bononi A; De Marchi E; Giorgi C; Lebiedzinska M; Marchi S; Patergnani S; Rimessi A; Suski JM; Wojtala A; Wieckowski MR; Kroemer G; Galluzzi L; Pinton P
    Cell Cycle; 2013 Feb; 12(4):674-83. PubMed ID: 23343770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial permeability transition involves dissociation of F
    Bonora M; Morganti C; Morciano G; Pedriali G; Lebiedzinska-Arciszewska M; Aquila G; Giorgi C; Rizzo P; Campo G; Ferrari R; Kroemer G; Wieckowski MR; Galluzzi L; Pinton P
    EMBO Rep; 2017 Jul; 18(7):1077-1089. PubMed ID: 28566520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into the mitochondrial permeability transition.
    Bonora M; Bravo-San Pedro JM; Kroemer G; Galluzzi L; Pinton P
    Cell Cycle; 2014; 13(17):2666-70. PubMed ID: 25486353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.
    He J; Carroll J; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9086-9091. PubMed ID: 28784775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection.
    Bernardi P; Di Lisa F
    J Mol Cell Cardiol; 2015 Jan; 78():100-6. PubMed ID: 25268651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the mitochondrial membrane permeability transition in cell death.
    Tsujimoto Y; Shimizu S
    Apoptosis; 2007 May; 12(5):835-40. PubMed ID: 17136322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore.
    Baines CP; Gutiérrez-Aguilar M
    Cell Calcium; 2018 Jul; 73():121-130. PubMed ID: 29793100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase.
    Jonas EA; Porter GA; Beutner G; Mnatsakanyan N; Alavian KN
    Pharmacol Res; 2015 Sep; 99():382-92. PubMed ID: 25956324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death.
    Baines CP; Kaiser RA; Sheiko T; Craigen WJ; Molkentin JD
    Nat Cell Biol; 2007 May; 9(5):550-5. PubMed ID: 17417626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition.
    Gutiérrez-Aguilar M; Douglas DL; Gibson AK; Domeier TL; Molkentin JD; Baines CP
    J Mol Cell Cardiol; 2014 Jul; 72():316-25. PubMed ID: 24768964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxic preconditioning-induced mitochondrial protection is not disrupted in a cell model of mtDNA T8993G mutation-induced F1F0-ATP synthase defect: the role of mitochondrial permeability transition.
    Huang WY; Jou MJ; Peng TI
    Free Radic Biol Med; 2014 Feb; 67():314-29. PubMed ID: 24291231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-sensitive glycogen synthase kinase 3β-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury.
    Wang Z; Ge Y; Bao H; Dworkin L; Peng A; Gong R
    Free Radic Biol Med; 2013 Dec; 65():849-858. PubMed ID: 23973862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death.
    McGee AM; Baines CP
    Biochem J; 2011 Jan; 433(1):119-25. PubMed ID: 20950273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca
    Giorgio V; Burchell V; Schiavone M; Bassot C; Minervini G; Petronilli V; Argenton F; Forte M; Tosatto S; Lippe G; Bernardi P
    EMBO Rep; 2017 Jul; 18(7):1065-1076. PubMed ID: 28507163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclophilin D in mitochondrial pathophysiology.
    Giorgio V; Soriano ME; Basso E; Bisetto E; Lippe G; Forte MA; Bernardi P
    Biochim Biophys Acta; 2010; 1797(6-7):1113-8. PubMed ID: 20026006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics.
    Winquist RJ; Gribkoff VK
    Biochem Pharmacol; 2020 Jul; 177():113995. PubMed ID: 32339494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-chain ceramide is a potent inhibitor of the mitochondrial permeability transition pore.
    Novgorodov SA; Gudz TI; Obeid LM
    J Biol Chem; 2008 Sep; 283(36):24707-17. PubMed ID: 18596045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase.
    Gerle C
    Biochim Biophys Acta; 2016 Aug; 1857(8):1191-1196. PubMed ID: 26968896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cyclophilin D in mitochondrial permeability transition induction in intact cells.
    Tazawa H; Fujita C; Machida K; Osada H; Ohta Y
    Arch Biochem Biophys; 2009 Jan; 481(1):59-64. PubMed ID: 18996353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.