BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 24727893)

  • 21. Mitochondrial membrane permeability transition and cell death.
    Tsujimoto Y; Nakagawa T; Shimizu S
    Biochim Biophys Acta; 2006; 1757(9-10):1297-300. PubMed ID: 16716247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology.
    Antoniel M; Giorgio V; Fogolari F; Glick GD; Bernardi P; Lippe G
    Int J Mol Sci; 2014 Apr; 15(5):7513-36. PubMed ID: 24786291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced resistance to Ca2+-induced mitochondrial permeability transition in the long-lived red-footed tortoise Chelonoidis carbonaria.
    Sartori MR; Navarro CDC; Castilho RF; Vercesi AE
    J Exp Biol; 2022 Jan; 225(1):. PubMed ID: 34904632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of High-Conductive C Subunit Channels upon Interaction with Cyclophilin D.
    Amodeo GF; Krilyuk N; Pavlov EV
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Lethal Channel between the ATP Synthase Monomers.
    Nesci S
    Trends Biochem Sci; 2018 May; 43(5):311-313. PubMed ID: 29555114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of aging on membrane permeability transition in brain mitochondria.
    Toman J; Fiskum G
    J Bioenerg Biomembr; 2011 Feb; 43(1):3-10. PubMed ID: 21311961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria.
    Daum B; Walter A; Horst A; Osiewacz HD; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15301-6. PubMed ID: 24006361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death.
    Li V; Brustovetsky T; Brustovetsky N
    Exp Neurol; 2009 Aug; 218(2):171-82. PubMed ID: 19236863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel.
    Guo L; Carraro M; Carrer A; Minervini G; Urbani A; Masgras I; Tosatto SCE; Szabò I; Bernardi P; Lippe G
    J Biol Chem; 2019 Jul; 294(28):10987-10997. PubMed ID: 31160339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice.
    King AL; Swain TM; Mao Z; Udoh US; Oliva CR; Betancourt AM; Griguer CE; Crowe DR; Lesort M; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2014 Feb; 306(4):G265-77. PubMed ID: 24356880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology.
    Bernardi P; Rasola A; Forte M; Lippe G
    Physiol Rev; 2015 Oct; 95(4):1111-55. PubMed ID: 26269524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amyloid β, α-synuclein and the c subunit of the ATP synthase: Can these peptides reveal an amyloidogenic pathway of the permeability transition pore?
    Amodeo GF; Pavlov EV
    Biochim Biophys Acta Biomembr; 2021 Mar; 1863(3):183531. PubMed ID: 33309700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial permeability transition pore: Back to the drawing board.
    Chinopoulos C
    Neurochem Int; 2018 Jul; 117():49-54. PubMed ID: 28647376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclophilin D as a drug target.
    Waldmeier PC; Zimmermann K; Qian T; Tintelnot-Blomley M; Lemasters JJ
    Curr Med Chem; 2003 Aug; 10(16):1485-506. PubMed ID: 12871122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase.
    Bernardi P; Di Lisa F; Fogolari F; Lippe G
    Circ Res; 2015 May; 116(11):1850-62. PubMed ID: 25999424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties.
    Izzo V; Bravo-San Pedro JM; Sica V; Kroemer G; Galluzzi L
    Trends Cell Biol; 2016 Sep; 26(9):655-667. PubMed ID: 27161573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions.
    Bernardi P; Gerle C; Halestrap AP; Jonas EA; Karch J; Mnatsakanyan N; Pavlov E; Sheu SS; Soukas AA
    Cell Death Differ; 2023 Aug; 30(8):1869-1885. PubMed ID: 37460667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. F-ATP synthase and the permeability transition pore: fewer doubts, more certainties.
    Carraro M; Checchetto V; Szabó I; Bernardi P
    FEBS Lett; 2019 Jul; 593(13):1542-1553. PubMed ID: 31197821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation.
    Feldkamp T; Park JS; Pasupulati R; Amora D; Roeser NF; Venkatachalam MA; Weinberg JM
    Am J Physiol Renal Physiol; 2009 Dec; 297(6):F1632-46. PubMed ID: 19741014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore.
    Alavian KN; Beutner G; Lazrove E; Sacchetti S; Park HA; Licznerski P; Li H; Nabili P; Hockensmith K; Graham M; Porter GA; Jonas EA
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10580-5. PubMed ID: 24979777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.