These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24727908)

  • 21. History of Monte Carlo modeling of light transport in tissues using mcml.c.
    Jacques SL
    J Biomed Opt; 2022 Jul; 27(8):. PubMed ID: 35854412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Monte Carlo simulations for propagation of light in biomedical tissues.
    Banerjee S; Sharma SK
    Appl Opt; 2010 Aug; 49(22):4152-9. PubMed ID: 20676167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.
    Wood MF; Guo X; Vitkin IA
    J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffuse photon propagation in multilayered geometries.
    Sikora J; Zacharopoulos A; Douiri A; Schweiger M; Horesh L; Arridge SR; Ripoll J
    Phys Med Biol; 2006 Feb; 51(3):497-516. PubMed ID: 16424578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations.
    Fang Q; Yan S
    J Biomed Opt; 2019 Nov; 24(11):1-6. PubMed ID: 31746154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium.
    He H; Zeng N; Li W; Yun T; Liao R; He Y; Ma H
    Opt Lett; 2010 Jul; 35(14):2323-5. PubMed ID: 20634817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Forced detection Monte Carlo algorithms for accelerated blood vessel image simulations.
    Fredriksson I; Larsson M; Strömberg T
    J Biophotonics; 2009 Mar; 2(3):178-84. PubMed ID: 19343698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Monte Carlo simulation of the divergent beam propagation in a semi-infinite bio-tissue].
    Zhang L; Qi S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Dec; 30(6):1209-12. PubMed ID: 24645598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data.
    Antonelli MR; Pierangelo A; Novikova T; Validire P; Benali A; Gayet B; De Martino A
    Opt Express; 2010 May; 18(10):10200-8. PubMed ID: 20588874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach.
    Dehghani H; Brooksby B; Vishwanath K; Pogue BW; Paulsen KD
    Phys Med Biol; 2003 Aug; 48(16):2713-27. PubMed ID: 12974584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo simulation of light transport in tissue for optimizing light delivery in photoacoustic imaging of the sentinel lymph node.
    Periyasamy V; Pramanik M
    J Biomed Opt; 2013 Oct; 18(10):106008. PubMed ID: 24108574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics.
    Su R; Kirillin M; Chang EW; Sergeeva E; Yun SH; Mattsson L
    Opt Express; 2014 Jun; 22(13):15804-19. PubMed ID: 24977838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The Acceleration of Monte Carlo Simulation for Optical Transmission in Large Space Biological Tissue].
    Yang X; Li G; Liu Y; Zhao J; Lin L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3476-80. PubMed ID: 30198249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry.
    Chen N
    Appl Opt; 2007 Apr; 46(10):1597-603. PubMed ID: 17356601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.