These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24728013)
41. Tumor Control Probability Analysis for Single-Fraction Carbon-Ion Radiation Therapy of Early-Stage Non-small Cell Lung Cancer. Paz AE; Yamamoto N; Sakama M; Matsufuji N; Kanai T Int J Radiat Oncol Biol Phys; 2018 Dec; 102(5):1551-1559. PubMed ID: 30076985 [TBL] [Abstract][Full Text] [Related]
42. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Carlson DJ; Keall PJ; Loo BW; Chen ZJ; Brown JM Int J Radiat Oncol Biol Phys; 2011 Mar; 79(4):1188-95. PubMed ID: 21183291 [TBL] [Abstract][Full Text] [Related]
43. Hypofractionation in non-small cell lung cancer (NSCLC): suggestions from modelling both acute and chronic hypoxia. Ruggieri R Phys Med Biol; 2004 Oct; 49(20):4811-23. PubMed ID: 15566177 [TBL] [Abstract][Full Text] [Related]
44. Modelling the interplay between hypoxia and proliferation in radiotherapy tumour response. Jeong J; Shoghi KI; Deasy JO Phys Med Biol; 2013 Jul; 58(14):4897-919. PubMed ID: 23787766 [TBL] [Abstract][Full Text] [Related]
45. Altered fractionation outcomes for hypoxic head and neck cancer using the HYP-RT Monte Carlo model. Harriss-Phillips WM; Bezak E; Yeoh EK Br J Radiol; 2013 Apr; 86(1024):20120443. PubMed ID: 23392195 [TBL] [Abstract][Full Text] [Related]
46. The Impact of Heterogeneous Cell Density in Hypoxic Tumors Treated with Radiotherapy. Schiavo F; Toma-Dasu I; Kjellsson Lindblom E Adv Exp Med Biol; 2023; 1438():121-126. PubMed ID: 37845450 [TBL] [Abstract][Full Text] [Related]
47. The contribution of high-LET track to DNA damage formation and cell death for Monoenergy and SOBP carbon ion irradiation. Chailapakul P; Maloney O; Hirakawa H; Fujimori A; Kitamura H; Kato TA Biochem Biophys Res Commun; 2024 Feb; 696():149500. PubMed ID: 38219488 [TBL] [Abstract][Full Text] [Related]
48. Relevance of oxygen in radiation oncology. Mechanisms of action, correlation to low hemoglobin levels. Molls M; Stadler P; Becker A; Feldmann HJ; Dunst J Strahlenther Onkol; 1998 Dec; 174 Suppl 4():13-6. PubMed ID: 9879341 [TBL] [Abstract][Full Text] [Related]
50. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions. Ando K; Koike S; Uzawa A; Takai N; Fukawa T; Furusawa Y; Aoki M; Hirayama R J Radiat Res; 2006 Jun; 47(2):167-74. PubMed ID: 16819143 [TBL] [Abstract][Full Text] [Related]
51. Dose and dose averaged LET comparison of ¹H, ⁴He, ⁶Li, ⁸Be, ¹⁰B, ¹²C, ¹⁴N, and ¹⁶O ion beams forming a spread-out Bragg peak. Kantemiris I; Karaiskos P; Papagiannis P; Angelopoulos A Med Phys; 2011 Dec; 38(12):6585-91. PubMed ID: 22149840 [TBL] [Abstract][Full Text] [Related]
52. Specification of Carbon Ion Dose at the National Institute of Radiological Sciences (NIRS). Matsufuji N; Kanai T; Kanematsu N; Miyamoto T; Baba M; Kamada T; Kato H; Yamada S; Mizoe JE; Tsujii H J Radiat Res; 2007; 48 Suppl A():A81-6. PubMed ID: 17513903 [TBL] [Abstract][Full Text] [Related]
53. Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Wein LM; Cohen JE; Wu JT Int J Radiat Oncol Biol Phys; 2000 Jul; 47(4):1073-83. PubMed ID: 10863081 [TBL] [Abstract][Full Text] [Related]
54. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs. Lagerlöf JH; Kindblom J; Bernhardt P Med Phys; 2011 Aug; 38(8):4888-93. PubMed ID: 21928660 [TBL] [Abstract][Full Text] [Related]
55. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Tsujii H; Mizoe JE; Kamada T; Baba M; Kato S; Kato H; Tsuji H; Yamada S; Yasuda S; Ohno T; Yanagi T; Hasegawa A; Sugawara T; Ezawa H; Kandatsu S; Yoshikawa K; Kishimoto R; Miyamoto T Radiother Oncol; 2004 Dec; 73 Suppl 2():S41-9. PubMed ID: 15971308 [TBL] [Abstract][Full Text] [Related]
57. EUD-based biological optimization for carbon ion therapy. Brüningk SC; Kamp F; Wilkens JJ Med Phys; 2015 Nov; 42(11):6248-57. PubMed ID: 26520717 [TBL] [Abstract][Full Text] [Related]
58. Bringing the heavy: carbon ion therapy in the radiobiological and clinical context. Schlaff CD; Krauze A; Belard A; O'Connell JJ; Camphausen KA Radiat Oncol; 2014 Mar; 9(1):88. PubMed ID: 24679134 [TBL] [Abstract][Full Text] [Related]
59. Split dose carbon ion irradiation of the rat spinal cord: Dependence of the relative biological effectiveness on dose and linear energy transfer. Saager M; Glowa C; Peschke P; Brons S; Grün R; Scholz M; Huber PE; Debus J; Karger CP Radiother Oncol; 2015 Nov; 117(2):358-63. PubMed ID: 26197953 [TBL] [Abstract][Full Text] [Related]
60. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation. Klein C; Dokic I; Mairani A; Mein S; Brons S; Häring P; Haberer T; Jäkel O; Zimmermann A; Zenke F; Blaukat A; Debus J; Abdollahi A Radiat Oncol; 2017 Dec; 12(1):208. PubMed ID: 29287602 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]