BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24728193)

  • 1. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata.
    Brunke S; Seider K; Richter ME; Bremer-Streck S; Ramachandra S; Kiehntopf M; Brock M; Hube B
    Eukaryot Cell; 2014 Jun; 13(6):758-65. PubMed ID: 24728193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily.
    Iraqui I; Vissers S; Cartiaux M; Urrestarazu A
    Mol Gen Genet; 1998 Jan; 257(2):238-48. PubMed ID: 9491083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae.
    Iraqui I; Vissers S; André B; Urrestarazu A
    Mol Cell Biol; 1999 May; 19(5):3360-71. PubMed ID: 10207060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatility of putative aromatic aminotransferases from Candida albicans.
    Rząd K; Milewski S; Gabriel I
    Fungal Genet Biol; 2018 Jan; 110():26-37. PubMed ID: 29199101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination.
    Urrestarazu A; Vissers S; Iraqui I; Grenson M
    Mol Gen Genet; 1998 Jan; 257(2):230-7. PubMed ID: 9491082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.
    Brunke S; Seider K; Almeida RS; Heyken A; Fleck CB; Brock M; Barz D; Rupp S; Hube B
    Mol Microbiol; 2010 Apr; 76(1):25-47. PubMed ID: 20199593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner kinetochore of the pathogenic yeast Candida glabrata.
    Stoyan T; Carbon J
    Eukaryot Cell; 2004 Oct; 3(5):1154-63. PubMed ID: 15470243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae.
    Ohashi K; Chaleckis R; Takaine M; Wheelock CE; Yoshida S
    Sci Rep; 2017 Sep; 7(1):12180. PubMed ID: 28939805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two aminotransferases from Candida albicans.
    Rząd K; Gabriel I
    Acta Biochim Pol; 2015; 62(4):903-12. PubMed ID: 26619256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of aromatic alcohol production in Candida albicans.
    Ghosh S; Kebaara BW; Atkin AL; Nickerson KW
    Appl Environ Microbiol; 2008 Dec; 74(23):7211-8. PubMed ID: 18836025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae.
    Yin S; Lang T; Xiao X; Liu L; Sun B; Wang C
    FEMS Microbiol Lett; 2015 Mar; 362(5):. PubMed ID: 25743068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae.
    Wang Z; Bai X; Guo X; He X
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):129-139. PubMed ID: 27770224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.
    Romagnoli G; Knijnenburg TA; Liti G; Louis EJ; Pronk JT; Daran JM
    Yeast; 2015 Jan; 32(1):29-45. PubMed ID: 24733517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.
    Gregori C; Schüller C; Roetzer A; Schwarzmüller T; Ammerer G; Kuchler K
    Eukaryot Cell; 2007 Sep; 6(9):1635-45. PubMed ID: 17616630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CgCYN1, a plasma membrane cystine-specific transporter of Candida glabrata with orthologues prevalent among pathogenic yeast and fungi.
    Yadav AK; Bachhawat AK
    J Biol Chem; 2011 Jun; 286(22):19714-23. PubMed ID: 21507960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway.
    Orkwis BR; Davies DL; Kerwin CL; Sanglard D; Wykoff DD
    Genetics; 2010 Nov; 186(3):885-95. PubMed ID: 20739710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an arginine transporter in Candida glabrata.
    Nishimura A; Tanahashi R; Nakagami K; Morioka Y; Takagi H
    J Gen Appl Microbiol; 2024 Feb; 69(4):229-233. PubMed ID: 37005249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.