These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24728207)

  • 1. The spectral diversity of resting-state fluctuations in the human brain.
    Kalcher K; Boubela RN; Huf W; Bartova L; Kronnerwetter C; Derntl B; Pezawas L; Filzmoser P; Nasel C; Moser E
    PLoS One; 2014; 9(4):e93375. PubMed ID: 24728207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest.
    Boubela RN; Kalcher K; Huf W; Kronnerwetter C; Filzmoser P; Moser E
    Front Hum Neurosci; 2013; 7():168. PubMed ID: 23641208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sampling Rate Effects on Resting State fMRI Metrics.
    Huotari N; Raitamaa L; Helakari H; Kananen J; Raatikainen V; Rasila A; Tuovinen T; Kantola J; Borchardt V; Kiviniemi VJ; Korhonen VO
    Front Neurosci; 2019; 13():279. PubMed ID: 31001071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional brain hubs and their test-retest reliability: a multiband resting-state functional MRI study.
    Liao XH; Xia MR; Xu T; Dai ZJ; Cao XY; Niu HJ; Zuo XN; Zang YF; He Y
    Neuroimage; 2013 Dec; 83():969-82. PubMed ID: 23899725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.
    Lee HL; Zahneisen B; Hugger T; LeVan P; Hennig J
    Neuroimage; 2013 Jan; 65():216-22. PubMed ID: 23069810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS.
    Sasai S; Homae F; Watanabe H; Taga G
    Neuroimage; 2011 May; 56(1):252-7. PubMed ID: 21211570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency functional brain networks in neonates revealed by rapid acquisition resting state fMRI.
    Smith-Collins AP; Luyt K; Heep A; Kauppinen RA
    Hum Brain Mapp; 2015 Jul; 36(7):2483-94. PubMed ID: 25787931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic changes in fMRI connectivity.
    Handwerker DA; Roopchansingh V; Gonzalez-Castillo J; Bandettini PA
    Neuroimage; 2012 Nov; 63(3):1712-9. PubMed ID: 22796990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of short repetition time resting-state functional MRI enabled by simultaneous multi-slice imaging.
    Jahanian H; Holdsworth S; Christen T; Wu H; Zhu K; Kerr AB; Middione MJ; Dougherty RF; Moseley M; Zaharchuk G
    J Neurosci Methods; 2019 Jan; 311():122-132. PubMed ID: 30300699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
    Hiltunen T; Kantola J; Abou Elseoud A; Lepola P; Suominen K; Starck T; Nikkinen J; Remes J; Tervonen O; Palva S; Kiviniemi V; Palva JM
    J Neurosci; 2014 Jan; 34(2):356-62. PubMed ID: 24403137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional integration between brain regions at rest occurs in multiple-frequency bands.
    Gohel SR; Biswal BB
    Brain Connect; 2015 Feb; 5(1):23-34. PubMed ID: 24702246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological fluctuations show frequency-specific networks in fNIRS signals during resting state.
    Fernandez Rojas R; Xu Huang ; Hernandez-Juarez J; Keng-Liang Ou
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2550-2553. PubMed ID: 29060419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates.
    Chen LM; Yang PF; Wang F; Mishra A; Shi Z; Wu R; Wu TL; Wilson GH; Ding Z; Gore JC
    Magn Reson Imaging; 2017 Jun; 39():71-81. PubMed ID: 28161319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data.
    Cordes D; Haughton VM; Arfanakis K; Carew JD; Turski PA; Moritz CH; Quigley MA; Meyerand ME
    AJNR Am J Neuroradiol; 2001 Aug; 22(7):1326-33. PubMed ID: 11498421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and amplitude modulation of resting-state fMRI signals and their functional relevance in normal aging.
    Yang AC; Tsai SJ; Lin CP; Peng CK; Huang NE
    Neurobiol Aging; 2018 Oct; 70():59-69. PubMed ID: 30007165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.
    Kim JY; Kim SH; Seo J; Kim SH; Han SW; Nam EJ; Kim SK; Lee HJ; Lee SJ; Kim YT; Chang Y
    Pain; 2013 Sep; 154(9):1792-1797. PubMed ID: 23714266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.