These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24728234)

  • 1. Direct conversion of multilayer molybdenum trioxide to nanorods as multifunctional electrodes in lithium-ion batteries.
    Ibrahem MA; Wu FY; Mengistie DA; Chang CS; Li LJ; Chu CW
    Nanoscale; 2014 May; 6(10):5484-90. PubMed ID: 24728234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell α-Fe₂O₃@α-MoO₃ nanorods as lithium-ion battery anodes with extremely high capacity and cyclability.
    Wang Q; Wang Q; Zhang DA; Sun J; Xing LL; Xue XY
    Chem Asian J; 2014 Nov; 9(11):3299-306. PubMed ID: 25169204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries.
    Huang G; Zhang F; Du X; Wang J; Yin D; Wang L
    Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.
    Ahmed B; Shahid M; Nagaraju DH; Anjum DH; Hedhili MN; Alshareef HN
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13154-63. PubMed ID: 26039512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnOOH nanorods as high-performance anodes for sodium ion batteries.
    Shao L; Zhao Q; Chen J
    Chem Commun (Camb); 2017 Feb; 53(16):2435-2438. PubMed ID: 28180227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel peapod-like Ni₂P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage.
    Bai Y; Zhang H; Li X; Liu L; Xu H; Qiu H; Wang Y
    Nanoscale; 2015 Jan; 7(4):1446-53. PubMed ID: 25502331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction.
    Rui K; Wen Z; Huang X; Lu Y; Jin J; Shen C
    Phys Chem Chem Phys; 2016 Feb; 18(5):3780-7. PubMed ID: 26766389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of SnO2/ZnWO4 core-shell nanorods with high reversible lithium storage capacity.
    Xing LL; Yuan S; He B; Zhao YY; Wu XL; Xue XY
    Chem Asian J; 2013 Jul; 8(7):1530-5. PubMed ID: 23653406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries.
    Yu Y; Yue C; Lin X; Sun S; Gu J; He X; Zhang C; Lin W; Lin D; Liao X; Xu B; Wu S; Zheng M; Li J; Kang J; Lin L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3992-9. PubMed ID: 26807654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D graphene supported MoO2 for high performance binder-free lithium ion battery.
    Huang ZX; Wang Y; Zhu YG; Shi Y; Wong JI; Yang HY
    Nanoscale; 2014 Aug; 6(16):9839-45. PubMed ID: 25028917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries.
    Zhu J; Ng KY; Deng D
    Nanoscale; 2015 Sep; 7(34):14368-77. PubMed ID: 26247159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.