These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24728234)

  • 21. Facile and rapid synthesis of highly porous wirelike TiO2 as anodes for lithium-ion batteries.
    Wang HE; Lu ZG; Xi LJ; Ma RG; Wang CD; Zapien JA; Bello I
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1608-13. PubMed ID: 22360340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.
    Wang X; Xie Y; Tang K; Wang C; Yan C
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11569-11573. PubMed ID: 29752747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties.
    Nie P; Shen L; Luo H; Li H; Xu G; Zhang X
    Nanoscale; 2013 Nov; 5(22):11087-93. PubMed ID: 24071706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MoV2O8 nanostructures: controlled synthesis and lithium storage mechanism.
    Yin Z; Xiao Y; Wang X; Wang W; Zhao D; Cao M
    Nanoscale; 2016 Jan; 8(1):508-16. PubMed ID: 26675341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.
    Liu D; Yang Z; Wang P; Li F; Wang D; He D
    Nanoscale; 2013 Mar; 5(5):1917-21. PubMed ID: 23354412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of LiFe0.975Rh0.025PO4 nanorods using the hydrothermal method.
    Tong D; Li Y; Chu W; Wu P; Luo F
    Dalton Trans; 2011 Apr; 40(16):4087-94. PubMed ID: 21384030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Crystal Face of Fe2O3 on the Electrochemical Performance for Lithium-ion Batteries.
    Chen M; Zhao E; Yan Q; Hu Z; Xiao X; Chen D
    Sci Rep; 2016 Jul; 6():29381. PubMed ID: 27380891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries.
    Li L; Seng KH; Chen Z; Guo Z; Liu HK
    Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries.
    Jing S; Jiang H; Hu Y; Li C
    Nanoscale; 2014 Nov; 6(23):14441-5. PubMed ID: 25340678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and electrochemical properties of Li0.33MnO2 nanorods as positive electrode material for 3 V lithium batteries.
    Kim MH; Kim KB; Park SM; Lee CT; Roh KC
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6199-202. PubMed ID: 24205628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries.
    Liao JY; Xiao X; Higgins D; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):568-74. PubMed ID: 24328159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries.
    Gu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Sep; 109(38):17901-6. PubMed ID: 16853296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.