BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24728264)

  • 21. Revealing chemical ordering in Pt-Co nanoparticles using electronic structure calculations and X-ray photoelectron spectroscopy.
    Kovács G; Kozlov SM; Matolínová I; Vorokhta M; Matolín V; Neyman KM
    Phys Chem Chem Phys; 2015 Nov; 17(42):28298-310. PubMed ID: 25955663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110).
    Ratliff JS; Tenney SA; Hu X; Conner SF; Ma S; Chen DA
    Langmuir; 2009 Jan; 25(1):216-25. PubMed ID: 19053659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactions of NO2 with BaO/Pt(111) model catalysts: the effects of BaO film thickness and NO2 pressure on the formation of Ba(NOx)2 species.
    Mudiyanselage K; Yi CW; Szanyi J
    Phys Chem Chem Phys; 2011 Jun; 13(23):11016-26. PubMed ID: 21566814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces.
    Liu Y; Abe H; Edvenson HM; Ghosh T; Disalvo FJ; Abruña HD
    Phys Chem Chem Phys; 2010 Oct; 12(40):12978-86. PubMed ID: 20820559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface and subsurface oxidation of Mo2C/Mo(100): low-energy ion-scattering, auger electron, angle-resolved X-ray photoelectron, and mass spectroscopy studies.
    Ovári L; Kiss J; Farkas AP; Solymosi F
    J Phys Chem B; 2005 Mar; 109(10):4638-45. PubMed ID: 16851543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interfacial properties of MgCl(2) thin films grown on Si(111)7 x 7.
    Karakalos S; Siokou A; Dracopoulos V; Sutara F; Skala T; Skoda M; Ladas S; Prince K; Matolin V; Chab V
    J Chem Phys; 2008 Mar; 128(10):104705. PubMed ID: 18345917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction.
    Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of NO with O2 on Pt(111) and Pt(321) large single crystals.
    Smeltz AD; Delgass WN; Ribeiro FH
    Langmuir; 2010 Nov; 26(21):16578-88. PubMed ID: 20666498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical and chemical oxidation of [Pt2(mu-pyrophosphite)4]4- revisited: characterization of a nitrosyl derivative, [Pt2(mu-pyrophosphite)4(NO)]3-.
    Bennett MA; Bhargava SK; Bond AM; Bansal V; Forsyth CM; Guo SX; Privér SH
    Inorg Chem; 2009 Mar; 48(6):2593-604. PubMed ID: 19226168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of cathode performance on Pt-CeO(x) by optimization of electrochemical pretreatment condition for PEFC application.
    Fugane K; Mori T; Ou DR; Yan P; Ye F; Yoshikawa H; Drennan J
    Langmuir; 2012 Dec; 28(48):16692-700. PubMed ID: 23110562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active-Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study.
    Escudero-Escribano M; Pedersen AF; Ulrikkeholm ET; Jensen KD; Hansen MH; Rossmeisl J; Stephens IEL; Chorkendorff I
    Chemistry; 2018 Aug; 24(47):12280-12290. PubMed ID: 29923250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zn adsorption on Pd(111): ZnO and PdZn alloy formation.
    Gabasch H; Knop-Gericke A; Schlögl R; Penner S; Jenewein B; Hayek K; Klötzer B
    J Phys Chem B; 2006 Jun; 110(23):11391-8. PubMed ID: 16771411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface structures and electrochemical activities of Pt overlayers on Ir nanoparticles.
    Lee KS; Yoo SJ; Ahn D; Jeon TY; Choi KH; Park IS; Sung YE
    Langmuir; 2011 Mar; 27(6):3128-37. PubMed ID: 21284392
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles.
    Ahmadi M; Cui C; Mistry H; Strasser P; Cuenya BR
    ACS Nano; 2015 Nov; 9(11):10686-94. PubMed ID: 26418831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of stable exfoliated Pt-clay nanocatalyst.
    Zhang W; Li MK; Wang R; Yue PL; Gao P
    Langmuir; 2009 Jul; 25(14):8226-34. PubMed ID: 19594188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanofaceted C/Re(1121): fabrication, structure, and template for synthesizing nanostructured model Pt electrocatalyst for hydrogen evolution reaction.
    Yang X; Koel BE; Wang H; Chen W; Bartynski RA
    ACS Nano; 2012 Feb; 6(2):1404-9. PubMed ID: 22264090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon monoxide adsorption on Ru-modified Pt surfaces: time-resolved infrared reflection absorption studies in ultrahigh vacuum.
    Yee N; Chottiner GS; Scherson DA
    J Phys Chem B; 2005 Mar; 109(12):5707-12. PubMed ID: 16851617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and compositional characterization of ultrathin titanium oxide films grown on Pt3Ti(111).
    Le Moal S; Moors M; Essen JM; Breinlich C; Becker C; Wandelt K
    J Phys Condens Matter; 2013 Jan; 25(4):045013. PubMed ID: 23288493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.