BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24728661)

  • 21. Binding of transition metal complexes to guanine and guanine-cytosine: hydrogen bonding and covalent effects.
    Robertazzi A; Platts JA
    J Biol Inorg Chem; 2005 Dec; 10(8):854-66. PubMed ID: 16228233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Guanine to inosine substitution leads to large increases in the population of a transient G·C Hoogsteen base pair.
    Nikolova EN; Stull F; Al-Hashimi HM
    Biochemistry; 2014 Nov; 53(46):7145-7. PubMed ID: 25339065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].
    Petrenko YM
    Biofizika; 2015; 60(5):853-60. PubMed ID: 26591595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen-bonded double-proton transfer in five guanine-cytosine base pairs after hydrogen atom addition.
    Lin Y; Wang H; Gao S; Li R; Schaefer HF
    J Phys Chem B; 2012 Aug; 116(30):8908-15. PubMed ID: 22774934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infrared Spectroscopic Observation of a G-C
    Stelling AL; Liu AY; Zeng W; Salinas R; Schumacher MA; Al-Hashimi HM
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12010-12013. PubMed ID: 31268220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].
    Brovarets' OO; Hovorun DM
    Ukr Biokhim Zh (1999); 2010; 82(3):55-60. PubMed ID: 21328878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic properties of metal-modified DNA base pairs.
    Brancolini G; Di Felice R
    J Phys Chem B; 2008 Nov; 112(45):14281-90. PubMed ID: 18950088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noncovalent interactions between modified cytosine and guanine DNA base pair mimics investigated by terahertz spectroscopy and solid-state density functional theory.
    King MD; Korter TM
    J Phys Chem A; 2011 Dec; 115(50):14391-6. PubMed ID: 22107026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Ag
    Srivastava R
    J Biomol Struct Dyn; 2018 Mar; 36(4):1050-1062. PubMed ID: 28325114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction energy contributions of H-bonded and stacked structures of the AT and GC DNA base pairs from the combined density functional theory and intermolecular perturbation theory approach.
    Hesselmann A; Jansen G; Schütz M
    J Am Chem Soc; 2006 Sep; 128(36):11730-1. PubMed ID: 16953592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron attachment to the hydrogenated Watson-Crick guanine cytosine base pair (GC+H): conventional and proton-transferred structures.
    Zhang JD; Chen Z; Schaefer HF
    J Phys Chem A; 2008 Jul; 112(27):6217-26. PubMed ID: 18557604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Higher order structural effects stabilizing the reverse Watson-Crick Guanine-Cytosine base pair in functional RNAs.
    Chawla M; Abdel-Azeim S; Oliva R; Cavallo L
    Nucleic Acids Res; 2014 Jan; 42(2):714-26. PubMed ID: 24121683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is non-statistical dissociation a general feature of guanine-cytosine base-pair ions? Collision-induced dissociation of a protonated 9-methylguanine-1-methylcytosine Watson-Crick base pair, and comparison with its deprotonated and radical cation analogues.
    Sun Y; Moe MM; Liu J
    Phys Chem Chem Phys; 2020 Nov; 22(43):24986-25000. PubMed ID: 33112302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Mg(2+) on the guanine-cytosine tautomeric equilibrium: simulations of the induced intermolecular proton transfer.
    Cerón-Carrasco JP; Jacquemin D
    Chemphyschem; 2011 Oct; 12(14):2615-23. PubMed ID: 21954005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair.
    Sigel RK; Freisinger E; Lippert B
    J Biol Inorg Chem; 2000 Jun; 5(3):287-99. PubMed ID: 10907739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct assessment of interresidue forces in Watson-Crick base pairs using theoretical compliance constants.
    Grunenberg J
    J Am Chem Soc; 2004 Dec; 126(50):16310-1. PubMed ID: 15600318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wobble base-pairing in codon-anticodon interactions: a theoretical modelling study.
    Mangang SU; Lyngdoh RH
    Indian J Biochem Biophys; 2001; 38(1-2):115-9. PubMed ID: 11563322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Topological Analysis of the ELF
    Klein J; Fleurat-Lessard P; Pilmé J
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34206097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.