These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24728717)

  • 1. An intermolecular disulfide bond is required for thermostability and thermoactivity of β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):7825-36. PubMed ID: 24728717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1.
    Han T; Zeng F; Li Z; Liu L; Wei M; Guan Q; Liang X; Peng Z; Liu M; Qin J; Zhang S; Jia B
    Lett Appl Microbiol; 2013 Oct; 57(4):336-43. PubMed ID: 23789737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant cyclodextrinase from Thermococcus kodakarensis KOD1: expression, purification, and enzymatic characterization.
    Sun Y; Lv X; Li Z; Wang J; Jia B; Liu J
    Archaea; 2015; 2015():397924. PubMed ID: 25688178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for branching-enzyme activity of glycoside hydrolase family 57: structure and stability studies of a novel branching enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Santos CR; Tonoli CC; Trindade DM; Betzel C; Takata H; Kuriki T; Kanai T; Imanaka T; Arni RK; Murakami MT
    Proteins; 2011 Feb; 79(2):547-57. PubMed ID: 21104698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, expression, and characterization of thermophilic L-asparaginase from Thermococcus kodakarensis KOD1.
    Hong SJ; Lee YH; Khan AR; Ullah I; Lee C; Park CK; Shin JH
    J Basic Microbiol; 2014 Jun; 54(6):500-8. PubMed ID: 24442710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence, Structure, and Binding Analysis of Cyclodextrinase (TK1770) from T. kodakarensis (KOD1) Using an In Silico Approach.
    Ali R; Shafiq MI
    Archaea; 2015; 2015():179196. PubMed ID: 26819569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis.
    Guo J; Coker AR; Wood SP; Cooper JB; Keegan RM; Ahmad N; Muhammad MA; Rashid N; Akhtar M
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):305-314. PubMed ID: 29652257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1.
    Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH
    J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the thermal stability of pyroglutamyl peptidase I by introduction of an intersubunit disulfide bond.
    Kabashima T; Li Y; Kanada N; Ito K; Yoshimoto T
    Biochim Biophys Acta; 2001 Jun; 1547(2):214-20. PubMed ID: 11410277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases.
    Shallom D; Golan G; Shoham G; Shoham Y
    J Bacteriol; 2004 Oct; 186(20):6928-37. PubMed ID: 15466046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of thermostability and catalytic efficiency of AprP, an alkaline protease from Pseudomonas sp., by the introduction of a disulfide bond.
    Ko JH; Jang WH; Kim EK; Lee HB; Park KD; Chung JH; Yoo OJ
    Biochem Biophys Res Commun; 1996 Apr; 221(3):631-5. PubMed ID: 8630012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability.
    Maeda N; Kanai T; Atomi H; Imanaka T
    J Biol Chem; 2002 Aug; 277(35):31656-62. PubMed ID: 12070156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis.
    Kim KP; Cho SS; Lee KK; Youn MH; Kwon ST
    J Biotechnol; 2011 Sep; 155(2):156-63. PubMed ID: 21723333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Y50H and S187G substitutions on thermostability and exonuclease activity of TK1646 from Thermococcus kodakarensis.
    Saeed MS; Siddiqui MA; Rashid N
    Protein Expr Purif; 2021 Mar; 179():105799. PubMed ID: 33249274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.
    Niu C; Zhu L; Xu X; Li Q
    PLoS One; 2016; 11(4):e0154036. PubMed ID: 27100881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of thermostability in bacterial 1,3-1,4-β-glucanases through spatial compartmentalization of mutational hotspots.
    Niu C; Zhu L; Xu X; Li Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1085-1097. PubMed ID: 27645297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.