BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24728765)

  • 1. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome.
    Zuo Y; Zhang P; Liu L; Li T; Peng Y; Li G; Li Q
    Chromosome Res; 2014 Sep; 22(3):321-34. PubMed ID: 24728765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization of nucleosomes around splice sites.
    Chen W; Luo L; Zhang L
    Nucleic Acids Res; 2010 May; 38(9):2788-98. PubMed ID: 20097656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved RNA secondary structures promote alternative splicing.
    Shepard PJ; Hertel KJ
    RNA; 2008 Aug; 14(8):1463-9. PubMed ID: 18579871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
    Reynolds DJ; Hertel KJ
    PLoS One; 2019; 14(10):e0223132. PubMed ID: 31581208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of learning splice sites of DNA sequence by neural networks.
    Ogura H; Agata H; Xie M; Odaka T; Furutani H
    Comput Biol Med; 1997 Jan; 27(1):67-75. PubMed ID: 9055047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GC content around splice sites affects splicing through pre-mRNA secondary structures.
    Zhang J; Kuo CC; Chen L
    BMC Genomics; 2011 Jan; 12():90. PubMed ID: 21281513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.
    Kawaguchi R; Kiryu H
    BMC Bioinformatics; 2016 May; 17(1):203. PubMed ID: 27153986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SITEVIDEO: a computer system for functional site analysis and recognition. Investigation of the human splice sites.
    Kel AE; Ponomarenko MP; Likhachev EA; Orlov YuL ; Ischenko IV; Milanesi L; Kolchanov NA
    Comput Appl Biosci; 1993 Dec; 9(6):617-27. PubMed ID: 7511478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of canonical and non-canonical splice sites in mammalian genomes.
    Burset M; Seledtsov IA; Solovyev VV
    Nucleic Acids Res; 2000 Nov; 28(21):4364-75. PubMed ID: 11058137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elements of the rat tropoelastin gene associated with alternative splicing.
    Pierce RA; Alatawi A; Deak SB; Boyd CD
    Genomics; 1992 Apr; 12(4):651-8. PubMed ID: 1572637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of all hexamers as exonic splicing elements.
    Ke S; Shang S; Kalachikov SM; Morozova I; Yu L; Russo JJ; Ju J; Chasin LA
    Genome Res; 2011 Aug; 21(8):1360-74. PubMed ID: 21659425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping.
    Divina P; Kvitkovicova A; Buratti E; Vorechovsky I
    Eur J Hum Genet; 2009 Jun; 17(6):759-65. PubMed ID: 19142208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA
    Nucleic Acids Res; 1992 Aug; 20(15):4027-32. PubMed ID: 1508687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-mRNA structures forming circular RNAs.
    Welden JR; Stamm S
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194410. PubMed ID: 31421281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5' splice sites.
    McCullough AJ; Berget SM
    Mol Cell Biol; 2000 Dec; 20(24):9225-35. PubMed ID: 11094074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intronic sequences and 3' splice sites control Rous sarcoma virus RNA splicing.
    McNally MT; Beemon K
    J Virol; 1992 Jan; 66(1):6-11. PubMed ID: 1309264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.