These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24728857)

  • 1. Computational identification of natural peptides based on analysis of molecular evolution.
    Toporik A; Borukhov I; Apatoff A; Gerber D; Kliger Y
    Bioinformatics; 2014 Aug; 30(15):2137-41. PubMed ID: 24728857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary sequence modeling for discovery of peptide hormones.
    Sonmez K; Zaveri NT; Kerman IA; Burke S; Neal CR; Xie X; Watson SJ; Toll L
    PLoS Comput Biol; 2009 Jan; 5(1):e1000258. PubMed ID: 19132080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest.
    Bhadra P; Yan J; Li J; Fong S; Siu SWI
    Sci Rep; 2018 Jan; 8(1):1697. PubMed ID: 29374199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates.
    Chang CL; Roh J; Hsu SY
    Peptides; 2004 Oct; 25(10):1633-42. PubMed ID: 15476930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel peptide hormones in the human proteome by hidden Markov model screening.
    Mirabeau O; Perlas E; Severini C; Audero E; Gascuel O; Possenti R; Birney E; Rosenthal N; Gross C
    Genome Res; 2007 Mar; 17(3):320-7. PubMed ID: 17284679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features.
    Huang JH; Wen M; Tang LJ; Xie HL; Fu L; Liang YZ; Lu HM
    Biochimie; 2014 Aug; 103():1-6. PubMed ID: 24721579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A discriminative method for protein remote homology detection based on N-Gram.
    Xie S; Li P; Jiang Y; Zhao Y
    Genet Mol Res; 2015 Jan; 14(1):69-78. PubMed ID: 25729937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-order neural networks and kernel methods for peptide-MHC binding prediction.
    Kuksa PP; Min MR; Dugar R; Gerstein M
    Bioinformatics; 2015 Nov; 31(22):3600-7. PubMed ID: 26206306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Dianjing G
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29987232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information.
    Zahiri J; Yaghoubi O; Mohammad-Noori M; Ebrahimpour R; Masoudi-Nejad A
    Genomics; 2013 Oct; 102(4):237-42. PubMed ID: 23747746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MISS-Prot: web server for self/non-self discrimination of protein residue networks in parasites; theory and experiments in Fasciola peptides and Anisakis allergens.
    González-Díaz H; Muíño L; Anadón AM; Romaris F; Prado-Prado FJ; Munteanu CR; Dorado J; Sierra AP; Mezo M; González-Warleta M; Gárate T; Ubeira FM
    Mol Biosyst; 2011 Jun; 7(6):1938-55. PubMed ID: 21468430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.