These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24729096)

  • 1. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
    Karande R; Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors.
    Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2010 Jul; 106(4):516-27. PubMed ID: 20229513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale.
    Halan B; Letzel T; Schmid A; Buehler K
    Biotechnol J; 2014 Oct; 9(10):1339-49. PubMed ID: 25111808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis.
    Gross R; Lang K; Bühler K; Schmid A
    Biotechnol Bioeng; 2010 Mar; 105(4):705-17. PubMed ID: 19845014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation.
    Schmutzler K; Kupitz K; Schmid A; Buehler K
    Microb Biotechnol; 2017 Jul; 10(4):735-744. PubMed ID: 27411543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations.
    Gross R; Hauer B; Otto K; Schmid A
    Biotechnol Bioeng; 2007 Dec; 98(6):1123-34. PubMed ID: 17614329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide.
    Gross R; Buehler K; Schmid A
    Biotechnol Bioeng; 2013 Feb; 110(2):424-36. PubMed ID: 22886684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time solvent tolerance analysis of pseudomonas sp. strain VLB120{Delta}C catalytic biofilms.
    Halan B; Schmid A; Buehler K
    Appl Environ Microbiol; 2011 Mar; 77(5):1563-71. PubMed ID: 21193676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivation of Productive Biofilms in Flow Reactors and Their Characterization by CLSM.
    David C; Heuschkel I; Bühler K; Karande R
    Methods Mol Biol; 2020; 2100():437-452. PubMed ID: 31939142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Streptomyces griseus biofilms in continuous flow tubular reactors.
    Winn M; Casey E; Habimana O; Murphy CD
    FEMS Microbiol Lett; 2014 Mar; 352(2):157-64. PubMed ID: 24417230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R; Debor L; Salamanca D; Bogdahn F; Engesser KH; Buehler K; Schmid A
    Biotechnol Bioeng; 2016 Jan; 113(1):52-61. PubMed ID: 26153144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC.
    Park JB; Bühler B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2007 Dec; 98(6):1219-29. PubMed ID: 17514751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.
    Hage JC; Van Houten RT; Tramper J; Hartmans S
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):718-25. PubMed ID: 15034684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium marinum biofilm formation reveals cording morphology.
    Hall-Stoodley L; Brun OS; Polshyna G; Barker LP
    FEMS Microbiol Lett; 2006 Apr; 257(1):43-9. PubMed ID: 16553830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.
    Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A
    Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: modeling and experimental comparison.
    Wang R; Terada A; Lackner S; Smets BF; Henze M; Xia S; Zhao J
    Water Res; 2009 Jun; 43(10):2699-709. PubMed ID: 19375773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-step method for analysing bacterial biofilm formation under continuous medium flow.
    Schmutzler K; Schmid A; Buehler K
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):6035-47. PubMed ID: 25936379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.