BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24729476)

  • 1. Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy.
    Cao C; Zhang J; Li S; Xiong Q
    Small; 2014 Aug; 10(16):3252-6. PubMed ID: 24729476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive sliver nanorods array SERS sensor for mercury ions.
    Song C; Yang B; Zhu Y; Yang Y; Wang L
    Biosens Bioelectron; 2017 Jan; 87():59-65. PubMed ID: 27522013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners.
    Sun B; Jiang X; Wang H; Song B; Zhu Y; Wang H; Su Y; He Y
    Anal Chem; 2015 Jan; 87(2):1250-6. PubMed ID: 25526293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS detection of mercury (II)/lead (II): A new class of DNA logic gates.
    Zou Q; Li X; Xue T; Zheng J; Su Q
    Talanta; 2019 Apr; 195():497-505. PubMed ID: 30625575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions.
    Wang G; Lim C; Chen L; Chon H; Choo J; Hong J; deMello AJ
    Anal Bioanal Chem; 2009 Aug; 394(7):1827-32. PubMed ID: 19444432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.
    Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H
    Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering.
    Kahraman M; Wachsmann-Hogiu S
    Anal Chim Acta; 2015 Jan; 856():74-81. PubMed ID: 25542360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip.
    Zou Q; Li X; Xue T; Mo S; Su Q; Zheng J
    Anal Sci; 2019 May; 35(5):493-498. PubMed ID: 30298820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. INHIBIT-inspired two-output DNA logic gates based on surface-enhanced Raman scattering.
    Wu Z; Dong B; Zhou X; Shen A; Hu J
    Chemistry; 2015 Oct; 21(41):14301-4. PubMed ID: 26383965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in detection of mercury using surface enhanced Raman spectroscopy--A review.
    Sun Z; Du J; Jing C
    J Environ Sci (China); 2016 Jan; 39():134-143. PubMed ID: 26899652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Au Nanooctahedron Micropinball Sensor for Mercury Ions.
    Duan Z; Zhang X; Ye T; Zhang X; Dong S; Liu J; Xiao X; Jiang C
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25737-25743. PubMed ID: 29978695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates.
    Li X; Sun L; Ding T
    Biosens Bioelectron; 2011 Apr; 26(8):3570-6. PubMed ID: 21377348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange.
    Du Y; Liu R; Liu B; Wang S; Han MY; Zhang Z
    Anal Chem; 2013 Mar; 85(6):3160-5. PubMed ID: 23438694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions.
    Ding X; Kong L; Wang J; Fang F; Li D; Liu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7072-8. PubMed ID: 23855919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine.
    Gu X; Camden JP
    Anal Chem; 2015 Jul; 87(13):6460-4. PubMed ID: 26057586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of viruses: atomic force microscopy and surface enhanced Raman spectroscopy.
    Porter MD; Driskell JD; Kwarta KM; Lipert RJ; Neill JD; Ridpath JF
    Dev Biol (Basel); 2006; 126():31-9; discussion 323. PubMed ID: 17058479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly active SERS sensing substrate: core-satellite assembly of gold nanorods/nanoplates.
    Li DD; Wang J; Zheng GC; Liu JH; Xu WH
    Nanotechnology; 2013 Jun; 24(23):235502. PubMed ID: 23669096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions.
    Ren W; Zhu C; Wang E
    Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.