These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24729508)

  • 21. VJ21.089The subcompartmented oxphosomic model of the phosphorylating system organization in mitochondria.
    Ukolova IV
    Vavilovskii Zhurnal Genet Selektsii; 2021 Nov; 25(7):778-786. PubMed ID: 34950849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The function of the respiratory supercomplexes: the plasticity model.
    Acin-Perez R; Enriquez JA
    Biochim Biophys Acta; 2014 Apr; 1837(4):444-50. PubMed ID: 24368156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain.
    Matsushita K; Ohnishi T; Kaback HR
    Biochemistry; 1987 Dec; 26(24):7732-7. PubMed ID: 3122832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The two terminal oxidases of the aerobic respiratory chain of Escherichia coli each yield water and not peroxide as a final product.
    Minghetti KC; Gennis RB
    Biochem Biophys Res Commun; 1988 Aug; 155(1):243-8. PubMed ID: 2843179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Succinate dehydrogenase and fumarate reductase from Escherichia coli.
    Cecchini G; Schröder I; Gunsalus RP; Maklashina E
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):140-57. PubMed ID: 11803023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The formate:oxygen oxidoreductase supercomplex of Escherichia coli aerobic respiratory chain.
    Sousa PM; Videira MA; Melo AM
    FEBS Lett; 2013 Aug; 587(16):2559-64. PubMed ID: 23827816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato.
    Bultema JB; Braun HP; Boekema EJ; Kouril R
    Biochim Biophys Acta; 2009 Jan; 1787(1):60-7. PubMed ID: 19059196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bacterial Stress Response Regulates Respiratory Protein Complexes To Control Envelope Stress Adaptation.
    Guest RL; Wang J; Wong JL; Raivio TL
    J Bacteriol; 2017 Oct; 199(20):. PubMed ID: 28760851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes.
    Sousa PMF; Videira MAM; Bohn A; Hood BL; Conrads TP; Goulao LF; Melo AMP
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2408-2418. PubMed ID: 22700653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative phosphorylation in Escherichia coli K12. An uncoupled mutant with altered membrane structure.
    Cox GB; Gibson F; McCann L
    Biochem J; 1974 Feb; 138(2):211-5. PubMed ID: 4150811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Respiratory chain supercomplexes in plant mitochondria.
    Eubel H; Heinemeyer J; Sunderhaus S; Braun HP
    Plant Physiol Biochem; 2004 Dec; 42(12):937-42. PubMed ID: 15707832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria.
    Ukolova IV; Kondakova MA; Kondratov IG; Sidorov AV; Borovskii GB; Voinikov VK
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148264. PubMed ID: 32663476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Oxidative Phosphorylation system of the mitochondria in plants.
    Braun HP
    Mitochondrion; 2020 Jul; 53():66-75. PubMed ID: 32334143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes.
    Lenn T; Leake MC
    Biochim Biophys Acta; 2016 Mar; 1857(3):224-31. PubMed ID: 26498189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for the structure of fumarate reductase in the cytoplasmic membrane of Escherichia coli.
    Weiner JH; Lemire BD; Jones RW; Anderson WF; Scraba DG
    J Cell Biochem; 1984; 24(3):205-14. PubMed ID: 6376524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supramolecular structure of the OXPHOS system in highly thermogenic tissue of Arum maculatum.
    Sunderhaus S; Klodmann J; Lenz C; Braun HP
    Plant Physiol Biochem; 2010 Apr; 48(4):265-72. PubMed ID: 20144873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
    Chaban Y; Boekema EJ; Dudkina NV
    Biochim Biophys Acta; 2014 Apr; 1837(4):418-26. PubMed ID: 24183696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I.
    Weidner U; Geier S; Ptock A; Friedrich T; Leif H; Weiss H
    J Mol Biol; 1993 Sep; 233(1):109-22. PubMed ID: 7690854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biogenesis of membrane bound respiratory complexes in Escherichia coli.
    Price CE; Driessen AJ
    Biochim Biophys Acta; 2010 Jun; 1803(6):748-66. PubMed ID: 20138092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.