These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Rodriguez Gutierrez D; Awwad A; Meijer L; Manita M; Jaspan T; Dineen RA; Grundy RG; Auer DP AJNR Am J Neuroradiol; 2014 May; 35(5):1009-15. PubMed ID: 24309122 [TBL] [Abstract][Full Text] [Related]
4. 3D Texture Analysis of Heterogeneous MRI Data for Diagnostic Classification of Childhood Brain Tumours. Fetit AE; Novak J; Rodriguez D; Auer DP; Clark CA; Grundy RG; Jaspan T; Peet AC; Arvanitis TN Stud Health Technol Inform; 2015; 213():19-22. PubMed ID: 26152942 [TBL] [Abstract][Full Text] [Related]
5. Magnetic Resonance Imaging Features of Common Posterior Fossa Brain Tumors in Children: A Preliminary Vietnamese Study. Duc NM; Huy HQ Open Access Maced J Med Sci; 2019 Aug; 7(15):2413-2418. PubMed ID: 31666838 [TBL] [Abstract][Full Text] [Related]
6. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493 [TBL] [Abstract][Full Text] [Related]
7. Convolutional neural network-based magnetic resonance image differentiation of filum terminale ependymomas from schwannomas. Gu Z; Dai W; Chen J; Jiang Q; Lin W; Wang Q; Chen J; Gu C; Li J; Ying G; Zhu Y BMC Cancer; 2024 Mar; 24(1):350. PubMed ID: 38504164 [TBL] [Abstract][Full Text] [Related]
8. MR signal of the solid portion of pilocytic astrocytoma on T2-weighted images: is it useful for differentiation from medulloblastoma? Arai K; Sato N; Aoki J; Yagi A; Taketomi-Takahashi A; Morita H; Koyama Y; Oba H; Ishiuchi S; Saito N; Endo K Neuroradiology; 2006 Apr; 48(4):233-7. PubMed ID: 16550430 [TBL] [Abstract][Full Text] [Related]
9. MRI findings of olivary degeneration after surgery for posterior fossa tumours in children: incidence, time course and correlation with tumour grading. Tartaglione T; Izzo G; Alexandre A; Botto A; Di Lella GM; Gaudino S; Caldarelli M; Colosimo C Radiol Med; 2015 May; 120(5):474-82. PubMed ID: 25572537 [TBL] [Abstract][Full Text] [Related]
10. Automatic Machine Learning to Differentiate Pediatric Posterior Fossa Tumors on Routine MR Imaging. Zhou H; Hu R; Tang O; Hu C; Tang L; Chang K; Shen Q; Wu J; Zou B; Xiao B; Boxerman J; Chen W; Huang RY; Yang L; Bai HX; Zhu C AJNR Am J Neuroradiol; 2020 Jul; 41(7):1279-1285. PubMed ID: 32661052 [TBL] [Abstract][Full Text] [Related]
11. Texture Analysis of T2-Weighted MR Images to Assess Acute Inflammation in Brain MS Lesions. Michoux N; Guillet A; Rommel D; Mazzamuto G; Sindic C; Duprez T PLoS One; 2015; 10(12):e0145497. PubMed ID: 26693908 [TBL] [Abstract][Full Text] [Related]
13. MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study. Holli-Helenius K; Salminen A; Rinta-Kiikka I; Koskivuo I; Brück N; Boström P; Parkkola R BMC Med Imaging; 2017 Dec; 17(1):69. PubMed ID: 29284425 [TBL] [Abstract][Full Text] [Related]
14. Texture analysis parameters derived from T1-and T2-weighted magnetic resonance images can reflect Ki67 index in soft tissue sarcoma. Meyer HJ; Renatus K; Höhn AK; Hamerla G; Schopow N; Fakler J; Josten C; Surov A Surg Oncol; 2019 Sep; 30():92-97. PubMed ID: 31500794 [TBL] [Abstract][Full Text] [Related]
15. [Classification of the types of pediatric posterior fossa brain tumors based on routine MRI using wavelet transformation analysis of whole tumor]. Wang SJ; Zhang W; He JP; Sun WH; Zhang R; Zhu MJ; Feng ZZ; Yang M; Sun Y Zhonghua Yi Xue Za Zhi; 2020 Jan; 100(3):178-181. PubMed ID: 32008282 [No Abstract] [Full Text] [Related]
16. Differentiation of paediatric posterior fossa tumours by the multiregional and multiparametric MRI radiomics approach: a study on the selection of optimal multiple sequences and multiregions. Dong J; Li S; Li L; Liang S; Zhang B; Meng Y; Zhang X; Zhang Y; Zhao S Br J Radiol; 2022 Jan; 95(1129):20201302. PubMed ID: 34767476 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach. Romeo V; Maurea S; Cuocolo R; Petretta M; Mainenti PP; Verde F; Coppola M; Dell'Aversana S; Brunetti A J Magn Reson Imaging; 2018 Jul; 48(1):198-204. PubMed ID: 29341325 [TBL] [Abstract][Full Text] [Related]
18. 3D texture analysis of MR images to improve classification of paediatric brain tumours: a preliminary study. Fetit AE; Novak J; Peet AC; Arvanitis TN Stud Health Technol Inform; 2014; 202():213-6. PubMed ID: 25000054 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI. Ahmed S; Iftekharuddin KM; Vossough A IEEE Trans Inf Technol Biomed; 2011 Mar; 15(2):206-13. PubMed ID: 21216716 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance dynamic susceptibility-weighted contrast-enhanced perfusion imaging in the diagnosis of posterior fossa hemangioblastomas and pilocytic astrocytomas: initial results. Kumar VA; Knopp EA; Zagzag D J Comput Assist Tomogr; 2010; 34(6):825-9. PubMed ID: 21084895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]