BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24729656)

  • 1. Branched Polyphosphazenes with Controlled Dimensions.
    Henke H; Wilfert S; Iturmendi A; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2013 Oct; 51(20):4467-4473. PubMed ID: 24729656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.
    Henke H; Posch S; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2016 May; 37(9):769-74. PubMed ID: 27027404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive Polyphosphazene-Based Molecular Brushes by Living Cationic Polymerization.
    Wilfert S; Iturmendi A; Henke H; Brüggemann O; Teasdale I
    Macromol Symp; 2014 Mar; 337(1):116-123. PubMed ID: 24926189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery.
    Teasdale I; Brüggemann O
    Polymers (Basel); 2013 Mar; 5(1):161-187. PubMed ID: 24729871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior.
    Wilfert S; Iturmendi A; Schoefberger W; Kryeziu K; Heffeter P; Berger W; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2014 Jan; 52(2):287-294. PubMed ID: 24729657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chain-end-functionalized polyphosphazenes via a one-pot phosphine-mediated living polymerization.
    Wilfert S; Henke H; Schoefberger W; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2014 Jun; 35(12):1135-41. PubMed ID: 24700544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids.
    Linhardt A; König M; Schöfberger W; Brüggemann O; Andrianov AK; Teasdale I
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone.
    Linhardt A; König M; Iturmendi A; Henke H; Brüggemann O; Teasdale I
    Ind Eng Chem Res; 2018 Mar; 57(10):3602-3609. PubMed ID: 29568158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hetero and homo α,ω-chain-end functionalized polyphosphazenes.
    Strasser P; Plavcan O; Ajvazi E; Henke H; Brüggemann O; Teasdale I
    J Polym Sci (2020); 2022 Jul; 60(13):2000-2007. PubMed ID: 35915665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polyphosphazenes for drug delivery applications.
    Lakshmi S; Katti DS; Laurencin CT
    Adv Drug Deliv Rev; 2003 Apr; 55(4):467-82. PubMed ID: 12706046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble biodegradable cationic polyphosphazenes for gene delivery.
    Luten J; van Steenis JH; van Someren R; Kemmink J; Schuurmans-Nieuwenbroek NM; Koning GA; Crommelin DJ; van Nostrum CF; Hennink WE
    J Control Release; 2003 May; 89(3):483-97. PubMed ID: 12737850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.
    Martinez AP; Qamar B; Fuerst TR; Muro S; Andrianov AK
    Biomacromolecules; 2017 Jun; 18(6):2000-2011. PubMed ID: 28525259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable cationic poly(carbonates): Effect of varying side chain hydrophobicity on key aspects of gene transfection.
    Ong ZY; Yang C; Cheng W; Voo ZX; Chin W; Hedrick JL; Yang YY
    Acta Biomater; 2017 May; 54():201-211. PubMed ID: 28323177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailored Branched Polymer-Protein Bioconjugates for Tunable Sieving Performance.
    Kapil K; Murata H; Szczepaniak G; Russell AJ; Matyjaszewski K
    ACS Macro Lett; 2024 Apr; 13(4):461-467. PubMed ID: 38574342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs.
    Quiñones JP; Iturmendi A; Henke H; Roschger C; Zierer A; Brüggemann O
    J Mater Chem B; 2019 Dec; 7(48):7783-7794. PubMed ID: 31755890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscopic cationic methacrylate star homopolymers: synthesis by group transfer polymerization, characterization and evaluation as transfection reagents.
    Georgiou TK; Vamvakaki M; Patrickios CS; Yamasaki EN; Phylactou LA
    Biomacromolecules; 2004; 5(6):2221-9. PubMed ID: 15530036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery.
    Qiu L; Hong CY; Pan CY
    Int J Nanomedicine; 2015; 10():3623-40. PubMed ID: 26056444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.