These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24729658)

  • 1. Mechanistic Imperatives for Deprotonation of Carbon Catalyzed by Triosephosphate Isomerase: Enzyme-Activation by Phosphite Dianion.
    Zhai X; Malabanan MM; Amyes TL; Richard JP
    J Phys Org Chem; 2014 Apr; 27(4):269-276. PubMed ID: 24729658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
    Amyes TL; Richard JP
    Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion.
    Malabanan MM; Go MK; Amyes TL; Richard JP
    Biochemistry; 2011 Jun; 50(25):5767-79. PubMed ID: 21553855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.
    Zhai X; Amyes TL; Wierenga RK; Loria JP; Richard JP
    Biochemistry; 2013 Aug; 52(34):5928-40. PubMed ID: 23909928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Ligand-Driven Conformational Changes in Enzyme Catalysis: Modeling the Reactivity of the Catalytic Cage of Triosephosphate Isomerase.
    Kulkarni YS; Liao Q; Byléhn F; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2018 Mar; 140(11):3854-3857. PubMed ID: 29516737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity in transition state binding: the Pauling model revisited.
    Amyes TL; Richard JP
    Biochemistry; 2013 Mar; 52(12):2021-35. PubMed ID: 23327224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydron transfer catalyzed by triosephosphate isomerase. Products of the direct and phosphite-activated isomerization of [1-(13)C]-glycolaldehyde in D(2)O.
    Go MK; Amyes TL; Richard JP
    Biochemistry; 2009 Jun; 48(24):5769-78. PubMed ID: 19425580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
    Malabanan MM; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2012 Jun; 134(24):10286-98. PubMed ID: 22583393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase.
    Richard JP
    Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme activation through the utilization of intrinsic dianion binding energy.
    Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP
    Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
    Zhai X; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Dec; 137(48):15185-97. PubMed ID: 26570983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding energy and catalysis by D-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde.
    Toteva MM; Silvaggi NR; Allen KN; Richard JP
    Biochemistry; 2011 Nov; 50(46):10170-81. PubMed ID: 21995300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.
    Tsang WY; Amyes TL; Richard JP
    Biochemistry; 2008 Apr; 47(16):4575-82. PubMed ID: 18376850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces.
    Cristobal JR; Richard JP
    Methods Enzymol; 2023; 685():95-126. PubMed ID: 37245916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site.
    Hegazy R; Richard JP
    Biochemistry; 2023 Oct; 62(20):2916-2927. PubMed ID: 37768194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a ligand-driven conformational change.
    Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2011 Oct; 133(41):16428-31. PubMed ID: 21939233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme Architecture: Amino Acid Side-Chains That Function To Optimize the Basicity of the Active Site Glutamate of Triosephosphate Isomerase.
    Zhai X; Reinhardt CJ; Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2018 Jul; 140(26):8277-8286. PubMed ID: 29862813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.