These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24729742)

  • 1. Towards a computational model of a methane producing archaeum.
    Peterson JR; Labhsetwar P; Ellermeier JR; Kohler PR; Jain A; Ha T; Metcalf WW; Luthey-Schulten Z
    Archaea; 2014; 2014():898453. PubMed ID: 24729742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and Physiological Probing of Cytoplasmic Bypasses for the Energy-Converting Methyltransferase Mtr in Methanosarcina acetivorans.
    Schöne C; Poehlein A; Rother M
    Appl Environ Microbiol; 2023 Jul; 89(7):e0216122. PubMed ID: 37347168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and transcriptomic response to methyl-coenzyme M reductase limitation in
    Chadwick GL; Dury GA; Nayak DD
    Appl Environ Microbiol; 2024 Jul; 90(7):e0222023. PubMed ID: 38916294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans.
    Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG
    J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.
    Duszenko N; Buan NR
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An engineered methanogenic pathway derived from the domains Bacteria and Archaea.
    Lessner DJ; Lhu L; Wahal CS; Ferry JG
    mBio; 2010 Nov; 1(5):. PubMed ID: 21060738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversing methanogenesis to capture methane for liquid biofuel precursors.
    Soo VW; McAnulty MJ; Tripathi A; Zhu F; Zhang L; Hatzakis E; Smith PB; Agrawal S; Nazem-Bokaee H; Gopalakrishnan S; Salis HM; Ferry JG; Maranas CD; Patterson AD; Wood TK
    Microb Cell Fact; 2016 Jan; 15():11. PubMed ID: 26767617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A.
    Rohlin L; Gunsalus RP
    BMC Microbiol; 2010 Feb; 10():62. PubMed ID: 20178638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans.
    Lira-Silva E; Santiago-Martínez MG; Hernández-Juárez V; García-Contreras R; Moreno-Sánchez R; Jasso-Chávez R
    PLoS One; 2012; 7(11):e48779. PubMed ID: 23152802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic techniques for studies of methyl-coenzyme M reductase from Methanosarcina acetivorans C2A.
    Nayak DD; Metcalf WW
    Methods Enzymol; 2018; 613():325-347. PubMed ID: 30509472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic reconstruction of the archaeon methanogen Methanosarcina Acetivorans.
    Satish Kumar V; Ferry JG; Maranas CD
    BMC Syst Biol; 2011 Feb; 5():28. PubMed ID: 21324125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.
    Catlett JL; Ortiz AM; Buan NR
    Appl Environ Microbiol; 2015 Oct; 81(19):6528-37. PubMed ID: 26162885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates.
    Hovey R; Lentes S; Ehrenreich A; Salmon K; Saba K; Gottschalk G; Gunsalus RP; Deppenmeier U
    Mol Genet Genomics; 2005 May; 273(3):225-39. PubMed ID: 15902489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex.
    Dong M; Gonzalez TD; Klems MM; Steinberg LM; Chen W; Papoutsakis ET; Bahnson BJ
    Biotechnol Prog; 2017 Sep; 33(5):1243-1249. PubMed ID: 28556629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
    Lessner DJ; Li L; Li Q; Rejtar T; Andreev VP; Reichlen M; Hill K; Moran JJ; Karger BL; Ferry JG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17921-6. PubMed ID: 17101988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide gene expression and RNA half-life measurements allow predictions of regulation and metabolic behavior in Methanosarcina acetivorans.
    Peterson JR; Thor S; Kohler L; Kohler PR; Metcalf WW; Luthey-Schulten Z
    BMC Genomics; 2016 Nov; 17(1):924. PubMed ID: 27852217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanol-dependent gene expression demonstrates that methyl-coenzyme M reductase is essential in Methanosarcina acetivorans C2A and allows isolation of mutants with defects in regulation of the methanol utilization pathway.
    Rother M; Boccazzi P; Bose A; Pritchett MA; Metcalf WW
    J Bacteriol; 2005 Aug; 187(16):5552-9. PubMed ID: 16077099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.