These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
669 related articles for article (PubMed ID: 24730250)
1. Scaffold design for bone regeneration. Polo-Corrales L; Latorre-Esteves M; Ramirez-Vick JE J Nanosci Nanotechnol; 2014 Jan; 14(1):15-56. PubMed ID: 24730250 [TBL] [Abstract][Full Text] [Related]
2. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Li H; Yang L; Dong X; Gu Y; Lv G; Yan Y J Mater Sci Mater Med; 2014 May; 25(5):1257-65. PubMed ID: 24488438 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
6. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
7. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Dong S; Sun J; Li Y; Li J; Cui W; Li B Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397 [TBL] [Abstract][Full Text] [Related]
9. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering. Rutledge K; Cheng Q; Pryzhkova M; Harris GM; Jabbarzadeh E Tissue Eng Part C Methods; 2014 Nov; 20(11):865-74. PubMed ID: 24634988 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475 [TBL] [Abstract][Full Text] [Related]
11. Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions. Seol YJ; Park JY; Jung JW; Jang J; Girdhari R; Kim SW; Cho DW Tissue Eng Part A; 2014 Nov; 20(21-22):2840-9. PubMed ID: 24784792 [TBL] [Abstract][Full Text] [Related]
12. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Roohani-Esfahani SI; Dunstan CR; Li JJ; Lu Z; Davies B; Pearce S; Field J; Williams R; Zreiqat H Acta Biomater; 2013 Jun; 9(6):7014-24. PubMed ID: 23467040 [TBL] [Abstract][Full Text] [Related]
13. Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds. Kruyt MC; van Gaalen SM; Oner FC; Verbout AJ; de Bruijn JD; Dhert WJ Biomaterials; 2004 Apr; 25(9):1463-73. PubMed ID: 14697849 [TBL] [Abstract][Full Text] [Related]
14. Design of biocomposite materials for bone tissue regeneration. Yunus Basha R; Sampath Kumar TS; Doble M Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284 [TBL] [Abstract][Full Text] [Related]
15. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
16. Silk-based anisotropical 3D biotextiles for bone regeneration. Ribeiro VP; Silva-Correia J; Nascimento AI; da Silva Morais A; Marques AP; Ribeiro AS; Silva CJ; Bonifácio G; Sousa RA; Oliveira JM; Oliveira AL; Reis RL Biomaterials; 2017 Apr; 123():92-106. PubMed ID: 28161684 [TBL] [Abstract][Full Text] [Related]
17. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model. Kim J; McBride S; Dean DD; Sylvia VL; Doll BA; Hollinger JO Biomed Mater; 2014 Jun; 9(3):035010. PubMed ID: 24784998 [TBL] [Abstract][Full Text] [Related]
18. The use of bone graft substitutes in large cancellous voids: any specific needs? Faour O; Dimitriou R; Cousins CA; Giannoudis PV Injury; 2011 Sep; 42 Suppl 2():S87-90. PubMed ID: 21723553 [TBL] [Abstract][Full Text] [Related]
19. Challenges in engineering large customized bone constructs. Forrestal DP; Klein TJ; Woodruff MA Biotechnol Bioeng; 2017 Jun; 114(6):1129-1139. PubMed ID: 27858993 [TBL] [Abstract][Full Text] [Related]