BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24730273)

  • 1. Recombinant protein-based nanoscale biomemory devices.
    Yagati AK; Min J; Choi JW
    J Nanosci Nanotechnol; 2014 Jan; 14(1):433-46. PubMed ID: 24730273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale protein-based memory device composed of recombinant azurin.
    Kim SU; Yagati AK; Min J; Choi JW
    Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-bit biomemory consisting of recombinant protein variants, azurin.
    Yagati AK; Kim SU; Min J; Choi JW
    Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers.
    Lee T; El-Said WA; Min J; Choi JW
    Biosens Bioelectron; 2011 Jan; 26(5):2304-10. PubMed ID: 21051218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A four-bit-per-cell program method with substrate-bias assisted hot electron injection for charge trap flash memory devices.
    An HM; Kim HD; Kim B; Kim TG
    J Nanosci Nanotechnol; 2013 May; 13(5):3293-7. PubMed ID: 23858846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory.
    Lee SH; Jung Y; Agarwal R
    Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer.
    Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application.
    Yagati AK; Kim SU; Min J; Choi JW
    J Nanosci Nanotechnol; 2010 May; 10(5):3220-3. PubMed ID: 20358926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key integration technologies for nanoscale FRAMs.
    Jung DJ; Kim HH; Kim K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2535-40. PubMed ID: 18276551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of graphene 'bow tie' nanofuses for permanent, write-once-read-many data storage devices.
    Pearson AC; Jamieson S; Linford MR; Lunt BM; Davis RC
    Nanotechnology; 2013 Apr; 24(13):135202. PubMed ID: 23478811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants.
    Lee T; Min J; Kim SU; Choi JW
    Biomaterials; 2011 May; 32(15):3815-21. PubMed ID: 21354614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge retention of self-assembled ferredoxin monolayer by the reduction-oxidation control for biomemory device.
    Nam YS; Kim SU; Lee T; Kang DY; Min J; Choi JW
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7113-7. PubMed ID: 19908739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generic relevance of counter charges for cation-based nanoscale resistive switching memories.
    Tappertzhofen S; Valov I; Tsuruoka T; Hasegawa T; Waser R; Aono M
    ACS Nano; 2013 Jul; 7(7):6396-402. PubMed ID: 23786236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance switching characteristics of HfO2 film with electrode for resistance change random access memory.
    Park IS; Lee JH; Lee S; Ahn J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4139-42. PubMed ID: 18047136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-stimulated resistive switching of ZnO nanorods.
    Park J; Lee S; Yong K
    Nanotechnology; 2012 Sep; 23(38):385707. PubMed ID: 22948083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution.
    Medeiros-Ribeiro G; Perner F; Carter R; Abdalla H; Pickett MD; Williams RS
    Nanotechnology; 2011 Mar; 22(9):095702. PubMed ID: 21258143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memristive switching mechanism for metal/oxide/metal nanodevices.
    Yang JJ; Pickett MD; Li X; Ohlberg DA; Stewart DR; Williams RS
    Nat Nanotechnol; 2008 Jul; 3(7):429-33. PubMed ID: 18654568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles.
    Tseng RJ; Tsai C; Ma L; Ouyang J; Ozkan CS; Yang Y
    Nat Nanotechnol; 2006 Oct; 1(1):72-7. PubMed ID: 18654145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.