These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nanocomposite Hydrogels and Their Applications in Drug Delivery and Tissue Engineering. Song F; Li X; Wang Q; Liao L; Zhang C J Biomed Nanotechnol; 2015 Jan; 11(1):40-52. PubMed ID: 26301299 [TBL] [Abstract][Full Text] [Related]
6. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation. Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658 [TBL] [Abstract][Full Text] [Related]
7. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Ronca A; Ambrosio L; Grijpma DW Acta Biomater; 2013 Apr; 9(4):5989-96. PubMed ID: 23232210 [TBL] [Abstract][Full Text] [Related]
8. Degradation behaviors of electrospun resorbable polyester nanofibers. Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
10. Tissue engineering scaffolds for the regeneration of craniofacial bone. Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334 [TBL] [Abstract][Full Text] [Related]
11. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of an UV-Curable Divinyl-Fumarate Poly-ε-Caprolactone for Stereolithography Applications. Ronca A; Ronca S; Forte G; Ambrosio L Methods Mol Biol; 2021; 2147():55-62. PubMed ID: 32840810 [TBL] [Abstract][Full Text] [Related]
14. Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO(2) foaming. Salerno A; Zeppetelli S; Di Maio E; Iannace S; Netti PA Macromol Rapid Commun; 2011 Aug; 32(15):1150-6. PubMed ID: 21648005 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
16. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
17. Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. Tong HW; Wang M J Nanosci Nanotechnol; 2007 Nov; 7(11):3834-40. PubMed ID: 18047070 [TBL] [Abstract][Full Text] [Related]
18. Electrospun nerve guide scaffold of poly(ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. Mohamadi F; Ebrahimi-Barough S; Reza Nourani M; Ali Derakhshan M; Goodarzi V; Sadegh Nazockdast M; Farokhi M; Tajerian R; Faridi Majidi R; Ai J J Biomed Mater Res A; 2017 Jul; 105(7):1960-1972. PubMed ID: 28324629 [TBL] [Abstract][Full Text] [Related]
19. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]