These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24730281)

  • 21. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-Aided Wet-Spinning.
    Puppi D; Chiellini F
    Methods Mol Biol; 2021; 2147():101-110. PubMed ID: 32840813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.
    Jing X; Mi HY; Wang XC; Peng XF; Turng LS
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterization of poly(vinyl alcohol)/poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone)/nano-hydroxyapatite composite membranes for tissue engineering.
    Peng J; Li X; Guo G; Yi T; Fu S; Liang H; Luo F; Zhao X; Wei Y; Qian Z
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2354-60. PubMed ID: 21449393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly adjustable biomaterial networks from three-armed biodegradable macromers.
    Loth R; Loth T; Schwabe K; Bernhardt R; Schulz-Siegmund M; Hacker MC
    Acta Biomater; 2015 Oct; 26():82-96. PubMed ID: 26277378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB; Rivero IV
    J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.
    Zhu GC; Gu YQ; Geng X; Feng ZG; Zhang SW; Ye L; Wang ZG
    J Mater Sci Mater Med; 2015 Feb; 26(2):112. PubMed ID: 25665848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation.
    Del Gaudio C; Vianello A; Bellezza G; Maulà V; Sidoni A; Zucchi A; Bianco A; Porena M
    Biomed Mater; 2013 Aug; 8(4):045013. PubMed ID: 23860081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free-form fabrication and micro-CT characterization of poly-epsilon-caprolactone tissue scaffolds.
    Darling AL; Sun W
    IEEE Eng Med Biol Mag; 2005; 24(1):78-83. PubMed ID: 15709540
    [No Abstract]   [Full Text] [Related]  

  • 40. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.