These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24730298)
1. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment. Lin M; Huang J; Sha M J Nanosci Nanotechnol; 2014 Jan; 14(1):792-802. PubMed ID: 24730298 [TBL] [Abstract][Full Text] [Related]
2. The anti-hepatoma effect of nanosized Mn-Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo. Lin M; Zhang D; Huang J; Zhang J; Xiao W; Yu H; Zhang L; Ye J Nanotechnology; 2013 Jun; 24(25):255101. PubMed ID: 23708194 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a nanosized as(2)o(3)/mn(0.5)zn(0.5)fe(2)o(4) complex and its anti-tumor effect on hepatocellular carcinoma cells. Zhang J; Zhang D Sensors (Basel); 2009; 9(9):7058-68. PubMed ID: 22399986 [TBL] [Abstract][Full Text] [Related]
4. Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn-Zn Ferrite Magnetic Nanoparticles. Wang Y; Zou L; Qiang Z; Jiang J; Zhu Z; Ren J ACS Biomater Sci Eng; 2020 Jun; 6(6):3550-3562. PubMed ID: 33463170 [TBL] [Abstract][Full Text] [Related]
5. Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid. Bhardwaj A; Parekh K; Jain N J Mater Sci Mater Med; 2023 Mar; 34(3):11. PubMed ID: 36917271 [TBL] [Abstract][Full Text] [Related]
6. [Preparation and characterization of Mn-Zn ferrite oxygene nanoparticle for tumor thermotherapy]. Jia X; Zhang D; Zheng J; Gu N; Zhu W; Fan X; Jin L; Wan M; Li Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1263-6. PubMed ID: 17228722 [TBL] [Abstract][Full Text] [Related]
7. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741 [TBL] [Abstract][Full Text] [Related]
8. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4) nanoparticles for induced tumor cell apoptosis. Qu Y; Li J; Ren J; Leng J; Lin C; Shi D ACS Appl Mater Interfaces; 2014 Oct; 6(19):16867-79. PubMed ID: 25204363 [TBL] [Abstract][Full Text] [Related]
9. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Xie J; Yan C; Yan Y; Chen L; Song L; Zang F; An Y; Teng G; Gu N; Zhang Y Nanoscale; 2016 Oct; 8(38):16902-15. PubMed ID: 27427416 [TBL] [Abstract][Full Text] [Related]
10. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
11. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications. Sabale S; Jadhav V; Khot V; Zhu X; Xin M; Chen H J Mater Sci Mater Med; 2015 Mar; 26(3):127. PubMed ID: 25690622 [TBL] [Abstract][Full Text] [Related]
12. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Bhardwaj A; Parekh K; Jain N Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662 [TBL] [Abstract][Full Text] [Related]
13. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. Alvarez-Berríos MP; Castillo A; Rinaldi C; Torres-Lugo M Int J Nanomedicine; 2014; 9():145-53. PubMed ID: 24379665 [TBL] [Abstract][Full Text] [Related]
14. Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9. Du Y; Zhang D; Liu H; Lai R BMC Biotechnol; 2009 Oct; 9():84. PubMed ID: 19804631 [TBL] [Abstract][Full Text] [Related]
15. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
16. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related]
17. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
18. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Wang ZY; Wang L; Zhang J; Li YT; Zhang DS Int J Nanomedicine; 2011; 6():871-5. PubMed ID: 21720500 [TBL] [Abstract][Full Text] [Related]
19. Study of structural and magnetic properties and heat induction of gadolinium-substituted manganese zinc ferrite nanoparticles for in vitro magnetic fluid hyperthermia. Jadhav SV; Shewale PS; Shin BC; Patil MP; Kim GD; Rokade AA; Park SS; Bohara RA; Yu YS J Colloid Interface Sci; 2019 Apr; 541():192-203. PubMed ID: 30690263 [TBL] [Abstract][Full Text] [Related]
20. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Rodríguez-Luccioni HL; Latorre-Esteves M; Méndez-Vega J; Soto O; Rodríguez AR; Rinaldi C; Torres-Lugo M Int J Nanomedicine; 2011; 6():373-80. PubMed ID: 21499427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]