BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24730461)

  • 1. High-performance composite membrane with enriched CO2-philic groups and improved adhesion at the interface.
    Li Y; Wang S; Wu H; Guo R; Liu Y; Jiang Z; Tian Z; Zhang P; Cao X; Wang B
    ACS Appl Mater Interfaces; 2014 May; 6(9):6654-63. PubMed ID: 24730461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.
    Li P; Wang Z; Li W; Liu Y; Wang J; Wang S
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15481-93. PubMed ID: 26121208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO
    Selyanchyn O; Selyanchyn R; Fujikawa S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33196-33209. PubMed ID: 32589389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO
    Zhou F; Tien HN; Xu WL; Chen JT; Liu Q; Hicks E; Fathizadeh M; Li S; Yu M
    Nat Commun; 2017 Dec; 8(1):2107. PubMed ID: 29235466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO
    Sánchez-Laínez J; Ballester-Catalán M; Javierre-Ortín E; Téllez C; Coronas J
    Dalton Trans; 2020 Mar; 49(9):2905-2913. PubMed ID: 32068209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of MXene Hollow Fiber Membranes for Gas Separations.
    Zhang Y; Sheng K; Wang Z; Wu W; Yin BH; Zhu J; Zhang Y
    Nano Lett; 2023 Apr; 23(7):2710-2718. PubMed ID: 36926943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postcombustion Carbon Capture Using Thin-Film Composite Membranes.
    Liu M; Nothling MD; Webley PA; Fu Q; Qiao GG
    Acc Chem Res; 2019 Jul; 52(7):1905-1914. PubMed ID: 31246007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoS2 Nanosheets Functionalized Composite Mixed Matrix Membrane for Enhanced CO2 Capture via Surface Drop-Coating Method.
    Shen Y; Wang H; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23371-8. PubMed ID: 27541953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.
    Wang B; Ho WS; Figueroa JD; Dutta PK
    Langmuir; 2015 Jun; 31(24):6894-901. PubMed ID: 26030505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes.
    Li X; Cheng Y; Zhang H; Wang S; Jiang Z; Guo R; Wu H
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5528-37. PubMed ID: 25686296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Halloysite Surface Chemistry for High Performance Nanotube-Thin Film Nanocomposite Gas Separation Membranes.
    Chehrazi E; Sharif A; Karimi M
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37527-37537. PubMed ID: 32692915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO
    Wang S; Xie Y; He G; Xin Q; Zhang J; Yang L; Li Y; Wu H; Zhang Y; Guiver MD; Jiang Z
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14246-14251. PubMed ID: 28940964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Graphene Oxide/Porous Organic Polymer Hybrid Nanosheets Functionalized Mixed Matrix Membrane for Efficient CO
    He R; Cong S; Wang J; Liu J; Zhang Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4338-4344. PubMed ID: 30615834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Graphene Oxide-Incorporated Thin-Film Composite Hollow Fiber Membranes through Interface Polymerization on Hydrophilic Substrate for CO
    Choi O; Hossain I; Jeong I; Park CH; Kim Y; Kim TH
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Ultramicroporosity To Maximize CO
    Yu L; Kanezashi M; Nagasawa H; Guo M; Moriyama N; Ito K; Tsuru T
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7164-7173. PubMed ID: 30694041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification.
    Yong WF; Ho YX; Chung TS
    ChemSusChem; 2017 Oct; 10(20):4046-4055. PubMed ID: 28834318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Yoon SS; Lee HK; Hong SR
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab Initio Screening of CO2-philic Groups.
    Tian Z; Saito T; Jiang DE
    J Phys Chem A; 2015 Apr; 119(16):3848-52. PubMed ID: 25825811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance.
    Quan S; Tang YP; Wang ZX; Jiang ZX; Wang RG; Liu YY; Shao L
    Macromol Rapid Commun; 2015 Mar; 36(5):490-5. PubMed ID: 25619384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pebax-Based Membrane Filled with Two-Dimensional Mxene Nanosheets for Efficient CO
    Liu G; Cheng L; Chen G; Liang F; Liu G; Jin W
    Chem Asian J; 2020 Aug; 15(15):2364-2370. PubMed ID: 31730288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.