These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24730570)
1. Pushing the theoretical limit of Li-CF(x) batteries: a tale of bifunctional electrolyte. Rangasamy E; Li J; Sahu G; Dudney N; Liang C J Am Chem Soc; 2014 May; 136(19):6874-7. PubMed ID: 24730570 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Elucidating the Role of Electrochemically Formed LiF in Discharge and Aging of Li-CF Schoetz T; Robinson LE; Gordon LW; Stariha SA; Harris CE; Seong HL; Jones JP; Brandon EJ; Messinger RJ ACS Appl Mater Interfaces; 2024 Apr; 16(15):18722-18733. PubMed ID: 38587415 [TBL] [Abstract][Full Text] [Related]
4. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Li H; Wang Y; Na H; Liu H; Zhou H J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514 [TBL] [Abstract][Full Text] [Related]
5. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications. Kim H; Kim TY; Roev V; Lee HC; Kwon HJ; Lee H; Kwon S; Im D ACS Appl Mater Interfaces; 2016 Jan; 8(2):1344-50. PubMed ID: 26698560 [TBL] [Abstract][Full Text] [Related]
7. Development of Fluoride-Ion Primary Batteries: The Electrochemical Defluorination of CF Robinson LE; Wang J; Asare H; Andrews JL; Tripathi B; Katiyar R; Melot BC; Messinger RJ; Jones SC; West WC J Phys Chem C Nanomater Interfaces; 2024 Aug; 128(34):14195-14205. PubMed ID: 39238900 [TBL] [Abstract][Full Text] [Related]
8. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy. Cohn G; Eichel RA; Ein-Eli Y Phys Chem Chem Phys; 2013 Mar; 15(9):3256-63. PubMed ID: 23348151 [TBL] [Abstract][Full Text] [Related]
9. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
10. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
11. A Li-O₂/air battery using an inorganic solid-state air cathode. Wang X; Zhu D; Song M; Cai S; Zhang L; Chen Y ACS Appl Mater Interfaces; 2014 Jul; 6(14):11204-10. PubMed ID: 24959838 [TBL] [Abstract][Full Text] [Related]
12. Prospects and Limits of Energy Storage in Batteries. Abraham KM J Phys Chem Lett; 2015 Mar; 6(5):830-44. PubMed ID: 26262660 [TBL] [Abstract][Full Text] [Related]
13. Reversible Hybrid Aqueous Li-CO Yang R; Peng Z; Xie J; Huang Y; Borse RA; Wang X; Wu M; Wang Y ChemSusChem; 2020 May; 13(10):2621-2627. PubMed ID: 32040263 [TBL] [Abstract][Full Text] [Related]
14. A solution-phase bifunctional catalyst for lithium-oxygen batteries. Sun D; Shen Y; Zhang W; Yu L; Yi Z; Yin W; Wang D; Huang Y; Wang J; Wang D; Goodenough JB J Am Chem Soc; 2014 Jun; 136(25):8941-6. PubMed ID: 24827741 [TBL] [Abstract][Full Text] [Related]
15. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
16. Multi-Scale Mechanical Behavior of the Li Baranowski LL; Heveran CM; Ferguson VL; Stoldt CR ACS Appl Mater Interfaces; 2016 Nov; 8(43):29573-29579. PubMed ID: 27723287 [TBL] [Abstract][Full Text] [Related]
17. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effect of Binary Electrolyte on Enhancement of the Energy Density in Li-O Hase Y; Nishioka K; Komori Y; Kusumoto T; Seki J; Kamiya K; Nakanishi S J Phys Chem Lett; 2020 Sep; 11(18):7657-7663. PubMed ID: 32830981 [TBL] [Abstract][Full Text] [Related]
19. Cation Mixing Properties toward Co Diffusion at the LiCoO Haruyama J; Sodeyama K; Tateyama Y ACS Appl Mater Interfaces; 2017 Jan; 9(1):286-292. PubMed ID: 27991765 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃. Zhang ZJ; Chou SL; Gu QF; Liu HK; Li HJ; Ozawa K; Wang JZ ACS Appl Mater Interfaces; 2014 Dec; 6(24):22155-65. PubMed ID: 25469550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]