These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24730570)
21. Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries. Chun J; Chung M; Lee J; Kim Y Phys Chem Chem Phys; 2013 May; 15(19):7036-40. PubMed ID: 23559258 [TBL] [Abstract][Full Text] [Related]
22. Dataset on a primary lithium battery cell with a ferroelectric Li-glass electrolyte and MnO Braga MH; Murchison AJ; Goodenough JB Data Brief; 2020 Apr; 29():105339. PubMed ID: 32181301 [TBL] [Abstract][Full Text] [Related]
23. Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory. Bhatt MD; Geaney H; Nolan M; O'Dwyer C Phys Chem Chem Phys; 2014 Jun; 16(24):12093-130. PubMed ID: 24833409 [TBL] [Abstract][Full Text] [Related]
24. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Cho JH; Aykol M; Kim S; Ha JH; Wolverton C; Chung KY; Kim KB; Cho BW J Am Chem Soc; 2014 Nov; 136(46):16116-9. PubMed ID: 25364815 [TBL] [Abstract][Full Text] [Related]
25. The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries. Jiang S; Huang P; Lu J; Liu Z RSC Adv; 2021 Jul; 11(41):25461-25470. PubMed ID: 35478916 [TBL] [Abstract][Full Text] [Related]
26. Ceria based catalyst for cathode in non-aqueous electrolyte based Li/O2 batteries. Kalubarme RS; Cho MS; Kim JK; Park CJ Nanotechnology; 2012 Nov; 23(43):435703. PubMed ID: 23059839 [TBL] [Abstract][Full Text] [Related]
27. Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. Arthur TS; Zhang R; Ling C; Glans PA; Fan X; Guo J; Mizuno F ACS Appl Mater Interfaces; 2014 May; 6(10):7004-8. PubMed ID: 24807043 [TBL] [Abstract][Full Text] [Related]
28. Electrochemical properties of graphene flakes as an air cathode material for Li-O2 batteries in an ether-based electrolyte. Kim SY; Lee HT; Kim KB Phys Chem Chem Phys; 2013 Dec; 15(46):20262-71. PubMed ID: 24166701 [TBL] [Abstract][Full Text] [Related]
29. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes. Oleshko VP; Lam T; Ruzmetov D; Haney P; Lezec HJ; Davydov AV; Krylyuk S; Cumings J; Talin AA Nanoscale; 2014 Oct; 6(20):11756-68. PubMed ID: 25157420 [TBL] [Abstract][Full Text] [Related]
30. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Tan S; Ji YJ; Zhang ZR; Yang Y Chemphyschem; 2014 Jul; 15(10):1956-69. PubMed ID: 25044525 [TBL] [Abstract][Full Text] [Related]
31. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries. Kang J; Han B J Phys Chem Lett; 2016 Jul; 7(14):2671-5. PubMed ID: 27345207 [TBL] [Abstract][Full Text] [Related]
32. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. Yoshida K; Nakamura M; Kazue Y; Tachikawa N; Tsuzuki S; Seki S; Dokko K; Watanabe M J Am Chem Soc; 2011 Aug; 133(33):13121-9. PubMed ID: 21774493 [TBL] [Abstract][Full Text] [Related]
33. Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. Wang SH; Kuo PL; Hsieh CT; Teng H ACS Appl Mater Interfaces; 2014 Nov; 6(21):19360-70. PubMed ID: 25361495 [TBL] [Abstract][Full Text] [Related]
34. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
35. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
36. Enhancing Catalyzed Decomposition of Na Fang C; Luo J; Jin C; Yuan H; Sheng O; Huang H; Gan Y; Xia Y; Liang C; Zhang J; Zhang W; Tao X ACS Appl Mater Interfaces; 2018 May; 10(20):17240-17248. PubMed ID: 29701452 [TBL] [Abstract][Full Text] [Related]
37. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Yin YX; Xin S; Guo YG; Wan LJ Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546 [TBL] [Abstract][Full Text] [Related]
38. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. Wang Z; Guo F; Chen C; Shi L; Yuan S; Sun L; Zhu J ACS Appl Mater Interfaces; 2015 Feb; 7(5):3314-22. PubMed ID: 25602261 [TBL] [Abstract][Full Text] [Related]
39. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940 [TBL] [Abstract][Full Text] [Related]
40. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]