These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24730578)

  • 1. Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes.
    Kärkönen A; Meisrimler CN; Takahashi J; Väisänen E; Laitinen T; Jiménez Barboza LA; Holmström S; Salonvaara S; Wienkoop S; Fagerstedt KV; Lüthje S
    Physiol Plant; 2014 Dec; 152(4):599-616. PubMed ID: 24730578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula).
    Marjamaa K; Kukkola E; Lundell T; Karhunen P; Saranpää P; Fagerstedt KV
    Tree Physiol; 2006 May; 26(5):605-11. PubMed ID: 16452074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce.
    Fagerstedt KV; Kukkola EM; Koistinen VV; Takahashi J; Marjamaa K
    J Integr Plant Biol; 2010 Feb; 52(2):186-94. PubMed ID: 20377680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and Purity Assessment of Membranes from Norway Spruce.
    Väisänen E; Takahashi J; Jiménez Barboza LA; Deng X; Teeri TH; Fagerstedt KV; Lüthje S; Kärkönen A
    Methods Mol Biol; 2018; 1696():13-39. PubMed ID: 29086394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.
    Koutaniemi S; Malmberg HA; Simola LK; Teeri TH; Kärkönen A
    J Integr Plant Biol; 2015 Apr; 57(4):341-8. PubMed ID: 25626739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture.
    Koutaniemi S; Toikka MM; Kärkönen A; Mustonen M; Lundell T; Simola LK; Kilpeläinen IA; Teeri TH
    Plant Mol Biol; 2005 May; 58(2):141-57. PubMed ID: 16027971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells.
    Vianello A; Macrì F
    J Bioenerg Biomembr; 1991 Jun; 23(3):409-23. PubMed ID: 1650779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide synthase and dismutase activity of plasma membranes from maize roots.
    Vuletić M; Hadzi-Tasković Sukalović V; Vucinić Z
    Protoplasma; 2003 May; 221(1-2):73-7. PubMed ID: 12768344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Key Role for Apoplastic H
    Laitinen T; Morreel K; Delhomme N; Gauthier A; Schiffthaler B; Nickolov K; Brader G; Lim KJ; Teeri TH; Street NR; Boerjan W; Kärkönen A
    Plant Physiol; 2017 Jul; 174(3):1449-1475. PubMed ID: 28522458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some properties of the H2O2/O2- generating system from the lignifying xylem of Zinnia elegans.
    Barceló AR
    Free Radic Res; 1999 Dec; 31 Suppl():S147-54. PubMed ID: 10694053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of xylem class III peroxidases in lignification.
    Marjamaa K; Kukkola EM; Fagerstedt KV
    J Exp Bot; 2009; 60(2):367-76. PubMed ID: 19264758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidase reaction of the hybrid Mn-peroxidase of the fungus Panus tigrinus 8/18.
    Lisov AV; Leontievsky AA; Golovleva LA
    Biochemistry (Mosc); 2005 Apr; 70(4):467-72. PubMed ID: 15892614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell wall peroxidases in the liverwort Dumortiera hirsuta are responsible for extracellular superoxide production, and can display tyrosinase activity.
    Li JL; Sulaiman M; Beckett RP; Minibayeva FV
    Physiol Plant; 2010 Apr; 138(4):474-84. PubMed ID: 19947974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ray Parenchymal Cells Contribute to Lignification of Tracheids in Developing Xylem of Norway Spruce.
    Blokhina O; Laitinen T; Hatakeyama Y; Delhomme N; Paasela T; Zhao L; Street NR; Wada H; Kärkönen A; Fagerstedt K
    Plant Physiol; 2019 Dec; 181(4):1552-1572. PubMed ID: 31558578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification.
    Ogawa K; Kanematsu S; Asada K
    Plant Cell Physiol; 1997 Oct; 38(10):1118-26. PubMed ID: 9399435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the formation of lignin polysaccharide networks in Norway spruce.
    Oinonen P; Zhang L; Lawoko M; Henriksson G
    Phytochemistry; 2015 Mar; 111():177-84. PubMed ID: 25549980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium.
    Mittler R; Zilinskas BA
    Anal Biochem; 1993 Aug; 212(2):540-6. PubMed ID: 8214598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.