These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24730604)

  • 1. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.
    Guo J; Luk LY; Loveridge EJ; Allemann RK
    Biochemistry; 2014 May; 53(17):2855-63. PubMed ID: 24730604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.
    Luk LY; Ruiz-Pernía JJ; Dawson WM; Loveridge EJ; Tuñón I; Moliner V; Allemann RK
    J Am Chem Soc; 2014 Dec; 136(49):17317-23. PubMed ID: 25396728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency.
    Oyeyemi OA; Sours KM; Lee T; Resing KA; Ahn NG; Klinman JP
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10074-9. PubMed ID: 20534574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix.
    Nakamura S; Tanaka T; Yada RY; Nakai S
    Protein Eng; 1997 Nov; 10(11):1263-9. PubMed ID: 9514114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature?
    Xu Y; Feller G; Gerday C; Glansdorff N
    J Bacteriol; 2003 Sep; 185(18):5519-26. PubMed ID: 12949104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative laboratory evolution of ordered and disordered enzymes.
    Schulenburg C; Stark Y; Künzle M; Hilvert D
    J Biol Chem; 2015 Apr; 290(15):9310-20. PubMed ID: 25697360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1996 Apr; 119(4):703-10. PubMed ID: 8743572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritima.
    Loveridge EJ; Rodriguez RJ; Swanwick RS; Allemann RK
    Biochemistry; 2009 Jun; 48(25):5922-33. PubMed ID: 19453185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acidic substitution of cysteine 167 by serine (C167S) in BstVI restriction endonuclease of Bacillus stearothermophilus V affects its conformation and thermostability.
    Loyola C; Saavedra C; Gómez I; Vásquez C
    Biochimie; 1999 Mar; 81(3):261-6. PubMed ID: 10385008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda.
    Evans RM; Behiry EM; Tey LH; Guo J; Loveridge EJ; Allemann RK
    Chembiochem; 2010 Sep; 11(14):2010-7. PubMed ID: 20726028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutation at methionine-42 of Escherichia coli dihydrofolate reductase on stability and function: implication of hydrophobic interactions.
    Ohmae E; Fukumizu Y; Iwakura M; Gekko K
    J Biochem; 2005 May; 137(5):643-52. PubMed ID: 15944418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal unfolding used as a probe to characterize the intra- and intersubunit stabilizing interactions in phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Roitel O; Ivinova O; Muronetz V; Nagradova N; Branlant G
    Biochemistry; 2002 Jun; 41(24):7556-64. PubMed ID: 12056886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.
    Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG
    J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus.
    Kawamura S; Abe Y; Ueda T; Masumoto K; Imoto T; Yamasaki N; Kimura M
    J Biol Chem; 1998 Aug; 273(32):19982-7. PubMed ID: 9685334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key amino acid residues in the assembly of enzymes into the pyruvate dehydrogenase complex of Bacillus stearothermophilus: a kinetic and thermodynamic analysis.
    Jung HI; Cooper A; Perham RN
    Biochemistry; 2002 Aug; 41(33):10446-53. PubMed ID: 12173931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased thermal stability of site-selectively glycosylated dihydrofolate reductase.
    Swanwick RS; Daines AM; Tey LH; Flitsch SL; Allemann RK
    Chembiochem; 2005 Aug; 6(8):1338-40. PubMed ID: 16003807
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.