These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24730717)

  • 21. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and
    Ottoy J; Niemantsverdriet E; Verhaeghe J; De Roeck E; Struyfs H; Somers C; Wyffels L; Ceyssens S; Van Mossevelde S; Van den Bossche T; Van Broeckhoven C; Ribbens A; Bjerke M; Stroobants S; Engelborghs S; Staelens S
    Neuroimage Clin; 2019; 22():101771. PubMed ID: 30927601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-carotid endarterectomy changes in cerebral glucose metabolism on (18)F-fluorodeoxyglucose positron emission tomography associated with postoperative improvement or impairment in cognitive function.
    Yoshida K; Ogasawara K; Saura H; Saito H; Kobayashi M; Yoshida K; Terasaki K; Fujiwara S; Ogawa A
    J Neurosurg; 2015 Dec; 123(6):1546-54. PubMed ID: 26230467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson's disease with and without dementia.
    Jokinen P; Scheinin N; Aalto S; Någren K; Savisto N; Parkkola R; Rokka J; Haaparanta M; Röyttä M; Rinne JO
    Parkinsonism Relat Disord; 2010 Dec; 16(10):666-70. PubMed ID: 20870446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utility of Molecular and Structural Brain Imaging to Predict Progression from Mild Cognitive Impairment to Dementia.
    Lan MJ; Ogden RT; Kumar D; Stern Y; Parsey RV; Pelton GH; Rubin-Falcone H; Pradhaban G; Zanderigo F; Miller JM; Mann JJ; Devanand DP
    J Alzheimers Dis; 2017; 60(3):939-947. PubMed ID: 28984586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson's disease.
    Blum D; la Fougère C; Pilotto A; Maetzler W; Berg D; Reimold M; Liepelt-Scarfone I
    Eur J Nucl Med Mol Imaging; 2018 Dec; 45(13):2387-2395. PubMed ID: 30008111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The accuracy of hippocampal volumetry and glucose metabolism for the diagnosis of patients with suspected Alzheimer's disease, using automatic quantitative clinical tools.
    Ferrari BL; Neto GCC; Nucci MP; Mamani JB; Lacerda SS; Felício AC; Amaro E; Gamarra LF
    Medicine (Baltimore); 2019 Nov; 98(45):e17824. PubMed ID: 31702636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypermetabolism in the hippocampal formation of cognitively impaired patients indicates detrimental maladaptation.
    Apostolova I; Lange C; Mäurer A; Suppa P; Spies L; Grothe MJ; Nierhaus T; Fiebach JB; Steinhagen-Thiessen E; Buchert R;
    Neurobiol Aging; 2018 May; 65():41-50. PubMed ID: 29407465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regional Disconnection in Alzheimer Dementia and Amyloid-Positive Mild Cognitive Impairment: Association Between EEG Functional Connectivity and Brain Glucose Metabolism.
    Smailovic U; Koenig T; Savitcheva I; Chiotis K; Nordberg A; Blennow K; Winblad B; Jelic V
    Brain Connect; 2020 Dec; 10(10):555-565. PubMed ID: 33073602
    [No Abstract]   [Full Text] [Related]  

  • 29. Clinical utility of 18F-FDG-PET/MRI brain in dementia: Preliminary experience from a geriatric clinic in South India.
    Mukku SSR; Sivakumar PT; Nagaraj C; Mangalore S; Harbishettar V; Varghese M
    Asian J Psychiatr; 2019 Aug; 44():99-105. PubMed ID: 31336358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional glucose metabolism due to the presence of cerebral amyloidopathy in older adults with depression and mild cognitive impairment.
    Youn H; Lee ES; Lee S; Suh S; Jeong HG; Eo JS
    J Affect Disord; 2018 Oct; 239():30-36. PubMed ID: 29991443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amyloid imaging with (11)C-PIB PET/CT and glucose metabolism with (18)F-FDG PET/CT in a study on cognitive impairment in the clinical setting.
    Banzo I; Jiménez-Bonilla J; Ortega-Nava F; Quirce R; Martínez-Rodríguez I; de Arcocha-Torres M; Rodríguez E; Vázquez JL; Sánchez PJ; Martínez-Amador N; Ibañez-Bravo S; Carril JM
    Nucl Med Commun; 2014 Mar; 35(3):238-44. PubMed ID: 24240196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparability of [
    Rodriguez-Vieitez E; Leuzy A; Chiotis K; Saint-Aubert L; Wall A; Nordberg A
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):740-749. PubMed ID: 27107028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of EEG-vigilance on brain glucose uptake measured with [(18)F]FDG and PET in patients with depressive episode or mild cognitive impairment.
    Guenther T; Schönknecht P; Becker G; Olbrich S; Sander C; Hesse S; Meyer PM; Luthardt J; Hegerl U; Sabri O
    Neuroimage; 2011 May; 56(1):93-101. PubMed ID: 21276863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of olfactory tract integrity affects cortical metabolism in the brain and olfactory regions in aging and mild cognitive impairment.
    Cross DJ; Anzai Y; Petrie EC; Martin N; Richards TL; Maravilla KR; Peskind ER; Minoshima S
    J Nucl Med; 2013 Aug; 54(8):1278-84. PubMed ID: 23804325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alteration patterns of brain glucose metabolism: comparisons of healthy controls, subjective memory impairment and mild cognitive impairment.
    Song IU; Choi EK; Oh JK; Chung YA; Chung SW
    Acta Radiol; 2016 Jan; 57(1):90-7. PubMed ID: 25538106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy.
    Lee EM; Park GY; Im KC; Kim ST; Woo CW; Chung JH; Kim KS; Kim JS; Shon YM; Kim YI; Kang JK
    Epilepsia; 2012 May; 53(5):860-9. PubMed ID: 22429025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebral glucose metabolism in idiopathic REM sleep behavior disorder is different from tau-related and α-synuclein-related neurodegenerative disorders: A brain [18F]FDG PET study.
    Liguori C; Ruffini R; Olivola E; Chiaravalloti A; Izzi F; Stefani A; Pierantozzi M; Mercuri NB; Modugno N; Centonze D; Schillaci O; Placidi F
    Parkinsonism Relat Disord; 2019 Jul; 64():97-105. PubMed ID: 30930059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amyloid and FDG PET of Successful Cognitive Aging: Global and Cingulate-Specific Differences.
    Baran TM; Lin FV;
    J Alzheimers Dis; 2018; 66(1):307-318. PubMed ID: 30282358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing fludeoxyglucose F18-PET assessment of regional cerebral glucose metabolism and [11C]dihydrotetrabenazine-PET in evaluation of early dementia and mild cognitive impairment.
    Albin RL; Koeppe RA; Burke JF; Giordani B; Kilbourn MR; Gilman S; Frey KA
    Arch Neurol; 2010 Apr; 67(4):440-6. PubMed ID: 20385910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 18F-FDG Is a Superior Indicator of Cognitive Performance Compared to 18F-Florbetapir in Alzheimer's Disease and Mild Cognitive Impairment Evaluation: A Global Quantitative Analysis.
    Khosravi M; Peter J; Wintering NA; Serruya M; Shamchi SP; Werner TJ; Alavi A; Newberg AB
    J Alzheimers Dis; 2019; 70(4):1197-1207. PubMed ID: 31322568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.