These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24730798)
1. Entanglement enhances cooling in microscopic quantum refrigerators. Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798 [TBL] [Abstract][Full Text] [Related]
2. Performance bound for quantum absorption refrigerators. Correa LA; Palao JP; Adesso G; Alonso D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395 [TBL] [Abstract][Full Text] [Related]
3. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement. Brask JB; Brunner N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062101. PubMed ID: 26764626 [TBL] [Abstract][Full Text] [Related]
4. Performance of quantum Otto refrigerators with squeezing. Long R; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691 [TBL] [Abstract][Full Text] [Related]
5. Geometric bounds on the power of adiabatic thermal machines. Eglinton J; Brandner K Phys Rev E; 2022 May; 105(5):L052102. PubMed ID: 35706185 [TBL] [Abstract][Full Text] [Related]
6. Current fluctuations in quantum absorption refrigerators. Segal D Phys Rev E; 2018 May; 97(5-1):052145. PubMed ID: 29906995 [TBL] [Abstract][Full Text] [Related]
7. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]
8. Maximum efficiency of absorption refrigerators at arbitrary cooling power. Ye Z; Holubec V Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287 [TBL] [Abstract][Full Text] [Related]
9. Quantum self-contained refrigerator in terms of the cavity quantum electrodynamics in the weak internal-coupling regime. Yu CS; Guo BQ; Liu T Opt Express; 2019 Mar; 27(5):6863-6877. PubMed ID: 30876263 [TBL] [Abstract][Full Text] [Related]
10. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling. Liu J; Jung KA Phys Rev E; 2024 Apr; 109(4-1):044118. PubMed ID: 38755899 [TBL] [Abstract][Full Text] [Related]
11. Classical emulation of quantum-coherent thermal machines. González JO; Palao JP; Alonso D; Correa LA Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638 [TBL] [Abstract][Full Text] [Related]
12. Small quantum absorption refrigerator with reversed couplings. Silva R; Skrzypczyk P; Brunner N Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012136. PubMed ID: 26274153 [TBL] [Abstract][Full Text] [Related]
13. Three-terminal quantum-dot refrigerators. Zhang Y; Lin G; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052118. PubMed ID: 26066130 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of quantum Otto and Carnot engines powered by a spin working substance. Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157 [TBL] [Abstract][Full Text] [Related]
15. Coherence and decoherence in quantum absorption refrigerators. Kilgour M; Segal D Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858 [TBL] [Abstract][Full Text] [Related]
16. Energetics of a simple microscopic heat engine. Asfaw M; Bekele M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690 [TBL] [Abstract][Full Text] [Related]
17. Autonomous quantum thermodynamic machines. Tonner F; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066118. PubMed ID: 16486021 [TBL] [Abstract][Full Text] [Related]