BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 24730839)

  • 1. Small-angle neutron scattering study of differences in phase behavior of silica nanoparticles in the presence of lysozyme and bovine serum albumin proteins.
    Yadav I; Kumar S; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032304. PubMed ID: 24730839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.
    Yadav I; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2017 Feb; 33(5):1227-1238. PubMed ID: 28079383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins.
    Yadav I; Aswal VK; Kohlbrecher J
    Phys Rev E; 2016 May; 93(5):052601. PubMed ID: 27300945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolyte effect on the phase behavior of silica nanoparticles with lysozyme and bovine-serum-albumin proteins.
    Yadav I; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052306. PubMed ID: 26066176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.
    Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2011 Aug; 27(16):10167-73. PubMed ID: 21707044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.
    Kumar S; Aswal VK; Callow P
    Langmuir; 2014 Feb; 30(6):1588-98. PubMed ID: 24475981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes.
    Mehan S; Chinchalikar AJ; Kumar S; Aswal VK; Schweins R
    Langmuir; 2013 Sep; 29(36):11290-9. PubMed ID: 23968136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of silica nanoparticles directed by adsorption of lysozyme.
    Bharti B; Meissner J; Findenegg GH
    Langmuir; 2011 Aug; 27(16):9823-33. PubMed ID: 21728288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.
    Kumar S; Ray D; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042316. PubMed ID: 25375503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles.
    Galdino FE; Picco AS; Sforca ML; Cardoso MB; Loh W
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110677. PubMed ID: 31812075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Interaction of Nanoparticle-Protein Complexes.
    Kumar S; Yadav I; Aswal VK; Kohlbrecher J
    Langmuir; 2018 May; 34(20):5679-5695. PubMed ID: 29672062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive effects of salt and surfactant on the structure of nanoparticles in a binary system of nanoparticle and protein.
    Saha D; Kumar S; Mata JP; Whitten AE; Aswal VK
    Phys Chem Chem Phys; 2023 Aug; 25(33):22130-22144. PubMed ID: 37563993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution.
    Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2012 Jun; 28(25):9288-97. PubMed ID: 22655980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging interactions of proteins with silica nanoparticles: the influence of pH, ionic strength and protein concentration.
    Bharti B; Meissner J; Klapp SH; Findenegg GH
    Soft Matter; 2014 Feb; 10(5):718-28. PubMed ID: 24835283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.
    Givens BE; Diklich ND; Fiegel J; Grassian VH
    Biointerphases; 2017 May; 12(2):02D404. PubMed ID: 28468503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions.
    Dong Z; Mao J; Yang M; Wang D; Bo S; Ji X
    Langmuir; 2011 Dec; 27(24):15282-91. PubMed ID: 22124164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block-copolymer-induced long-range depletion interaction and clustering of silica nanoparticles in aqueous solution.
    Kumar S; Lee MJ; Aswal VK; Choi SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042315. PubMed ID: 23679422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of silica nanoparticle-lysozyme protein complexes in the presence of the SDS surfactant.
    Saha D; Kumar S; Ray D; Mata JP; Whitten AE; Aswal VK
    Soft Matter; 2022 Jan; 18(2):434-445. PubMed ID: 34908081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface.
    Rosen JE; Gu FX
    Langmuir; 2011 Sep; 27(17):10507-13. PubMed ID: 21761888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitteration as an alternative to PEGylation.
    Estephan ZG; Schlenoff PS; Schlenoff JB
    Langmuir; 2011 Jun; 27(11):6794-800. PubMed ID: 21528934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.