BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24730850)

  • 1. Scaling properties of planar discrete Poisson-Voronoi tessellations with von Neumann neighborhoods constructed according to the nucleation and growth mechanism.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032405. PubMed ID: 24730850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundaries, kinetic properties, and final domain structure of plane discrete uniform Poisson-Voronoi tessellations with von Neumann neighborhoods.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031607. PubMed ID: 19391954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling properties of the area distribution functions and kinetic curves of dense plane discrete Poisson-Voronoi tessellations.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):014401. PubMed ID: 23410473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of plane discrete Poisson-Voronoi tessellations on triangular tiling formed by the Kolmogorov-Johnson-Mehl-Avrami growth of triangular islands.
    Korobov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021602. PubMed ID: 21928994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal evolution of the domain structure in a Poisson-Voronoi nucleation and growth transformation: results for one and three dimensions.
    Pineda E; Crespo D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021110. PubMed ID: 18850789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings.
    Bormashenko E; Legchenkova I; Frenkel M; Shvalb N; Shoval S
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell size distribution in random tessellations of space.
    Pineda E; Bruna P; Crespo D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066119. PubMed ID: 15697446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-evaluating the use of Voronoi Tessellations in the assessment of oxygen supply from capillaries in muscle.
    Al-Shammari AA; Gaffney EA; Egginton S
    Bull Math Biol; 2012 Sep; 74(9):2204-31. PubMed ID: 22829181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistics of cross sections of Voronoi tessellations.
    Ferraro M; Zaninetti L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041107. PubMed ID: 22181087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting of random tessellation models to keratin filament networks.
    Beil M; Eckel S; Fleischer F; Schmidt H; Schmidt V; Walther P
    J Theor Biol; 2006 Jul; 241(1):62-72. PubMed ID: 16380137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks.
    Lazar EA; Mason JK; MacPherson RD; Srolovitz DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063309. PubMed ID: 24483586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poisson-Delaunay Mosaics of Order
    Edelsbrunner H; Nikitenko A
    Discrete Comput Geom; 2019; 62(4):865-878. PubMed ID: 31749513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
    Klatt MA; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052120. PubMed ID: 25493753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws.
    Muzy JF; Bacry E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056121. PubMed ID: 12513570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An edge-weighted centroidal Voronoi tessellation model for image segmentation.
    Wang J; Ju L; Wang X
    IEEE Trans Image Process; 2009 Aug; 18(8):1844-58. PubMed ID: 19556200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image segmentation using local variation and edge-weighted centroidal Voronoi tessellations.
    Wang J; Ju L; Wang X
    IEEE Trans Image Process; 2011 Nov; 20(11):3242-56. PubMed ID: 21550885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voronoi and Voronoi-related tessellations in studies of protein structure and interaction.
    Poupon A
    Curr Opin Struct Biol; 2004 Apr; 14(2):233-41. PubMed ID: 15093839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markovian milestoning with Voronoi tessellations.
    Vanden-Eijnden E; Venturoli M
    J Chem Phys; 2009 May; 130(19):194101. PubMed ID: 19466815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voro3D: 3D Voronoi tessellations applied to protein structures.
    Dupuis F; Sadoc JF; Jullien R; Angelov B; Mornon JP
    Bioinformatics; 2005 Apr; 21(8):1715-6. PubMed ID: 15217822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical models of tumor growth using Voronoi tessellations in pathology slides of kidney cancer.
    Saribudak A; Yiyu Dong ; Gundry S; Hsieh J; Uyar MU
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4454-7. PubMed ID: 26737283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.