These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 24730910)
1. Inverse approach to chronotaxic systems for single-variable time series. Clemson PT; Suprunenko YF; Stankovski T; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032904. PubMed ID: 24730910 [TBL] [Abstract][Full Text] [Related]
2. Chronotaxic systems with separable amplitude and phase dynamics. Suprunenko YF; Clemson PT; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012922. PubMed ID: 24580312 [TBL] [Abstract][Full Text] [Related]
3. External periodic driving of large systems of globally coupled phase oscillators. Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486 [TBL] [Abstract][Full Text] [Related]
4. Universality in the one-dimensional chain of phase-coupled oscillators. Lee TE; Refael G; Cross MC; Kogan O; Rogers JL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046210. PubMed ID: 19905418 [TBL] [Abstract][Full Text] [Related]
5. Echo phenomena in large systems of coupled oscillators. Ott E; Platig JH; Antonsen TM; Girvan M Chaos; 2008 Sep; 18(3):037115. PubMed ID: 19045489 [TBL] [Abstract][Full Text] [Related]
6. Low dimensional behavior of large systems of globally coupled oscillators. Ott E; Antonsen TM Chaos; 2008 Sep; 18(3):037113. PubMed ID: 19045487 [TBL] [Abstract][Full Text] [Related]
7. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. Moskalenko OI; Koronovskii AA; Hramov AE Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):064901. PubMed ID: 23848814 [TBL] [Abstract][Full Text] [Related]
8. Bivariate phase-rectified signal averaging--a novel technique for cross-correlation analysis in noisy nonstationary signals. Bauer A; Barthel P; Müller A; Kantelhardt J; Schmidt G J Electrocardiol; 2009; 42(6):602-6. PubMed ID: 19665726 [TBL] [Abstract][Full Text] [Related]
9. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. Duggento A; Stankovski T; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912 [TBL] [Abstract][Full Text] [Related]
10. Analysis of structures causing instabilities. Wilhelm T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011911. PubMed ID: 17677498 [TBL] [Abstract][Full Text] [Related]
11. Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. Meste O; Khaddoumi B; Blain G; Bermon S IEEE Trans Biomed Eng; 2005 Nov; 52(11):1921-30. PubMed ID: 16285396 [TBL] [Abstract][Full Text] [Related]
12. Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. So P; Cotton BC; Barreto E Chaos; 2008 Sep; 18(3):037114. PubMed ID: 19045488 [TBL] [Abstract][Full Text] [Related]
13. Modulated oscillations in many dimensions. Olhede SC Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110551. PubMed ID: 23277608 [TBL] [Abstract][Full Text] [Related]
14. Some aspects of the synchronization in coupled maps. de Souza Pinto SE; Lunardi JT; Saleh AM; Batista AM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037206. PubMed ID: 16241623 [TBL] [Abstract][Full Text] [Related]
15. Effect of common noise on phase synchronization in coupled chaotic oscillators. Park K; Lai YC; Krishnamoorthy S; Kandangath A Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241 [TBL] [Abstract][Full Text] [Related]
16. Generalized synchronization in mutually coupled oscillators and complex networks. Moskalenko OI; Koronovskii AA; Hramov AE; Boccaletti S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036216. PubMed ID: 23031006 [TBL] [Abstract][Full Text] [Related]
17. A partial synchronization theorem. Pogromsky AY Chaos; 2008 Sep; 18(3):037107. PubMed ID: 19045481 [TBL] [Abstract][Full Text] [Related]
18. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks. Sun J; Lin H Chaos; 2008 Sep; 18(3):033127. PubMed ID: 19045465 [TBL] [Abstract][Full Text] [Related]
19. Traveling waves and compactons in phase oscillator lattices. Ahnert K; Pikovsky A Chaos; 2008 Sep; 18(3):037118. PubMed ID: 19045492 [TBL] [Abstract][Full Text] [Related]
20. Analytical calculation of the frequency shift in phase oscillators driven by colored noise: implications for electrical engineering and neuroscience. Galán RF Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036113. PubMed ID: 19905186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]