These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24730917)

  • 1. Resonances and poles in isoscattering microwave networks and graphs.
    Ławniczak M; Sawicki A; Bauch S; Kuś M; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032911. PubMed ID: 24730917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are scattering properties of graphs uniquely connected to their shapes?
    Hul O; Ławniczak M; Bauch S; Sawicki A; Kuś M; Sirko L
    Phys Rev Lett; 2012 Jul; 109(4):040402. PubMed ID: 23006068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to hear the shape of isoscattering networks.
    Hul O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062915. PubMed ID: 23848756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoscattering strings of concatenating graphs and networks.
    Ławniczak M; Sawicki A; Białous M; Sirko L
    Sci Rep; 2021 Jan; 11(1):1575. PubMed ID: 33452312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental simulation of quantum graphs by microwave networks.
    Hul O; Bauch S; Pakoński P; Savytskyy N; Zyczkowski K; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056205. PubMed ID: 15244902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Weyl Microwave Graphs.
    Ławniczak M; Lipovský J; Sirko L
    Phys Rev Lett; 2019 Apr; 122(14):140503. PubMed ID: 31050459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.
    Lawniczak M; Hul O; Bauch S; Seba P; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056210. PubMed ID: 18643145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delay-time distribution in the scattering of short Gaussian pulses in microwave networks.
    Białous M; Dulian P; Sawicki A; Sirko L
    Phys Rev E; 2021 Aug; 104(2-1):024223. PubMed ID: 34525523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological resonances in scattering on networks (graphs).
    Gnutzmann S; Schanz H; Smilansky U
    Phys Rev Lett; 2013 Mar; 110(9):094101. PubMed ID: 23496712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption.
    Ławniczak M; Bauch S; Hul O; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046204. PubMed ID: 20481804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hearing Euler characteristic of graphs.
    Ławniczak M; Kurasov P; Bauch S; Białous M; Yunko V; Sirko L
    Phys Rev E; 2020 May; 101(5-1):052320. PubMed ID: 32575246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral properties of microwave graphs with local absorption.
    Allgaier M; Gehler S; Barkhofen S; Stöckmann HJ; Kuhl U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022925. PubMed ID: 25353563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge switch transformation in microwave networks.
    Yunko V; Białous M; Sirko L
    Phys Rev E; 2020 Jul; 102(1-1):012210. PubMed ID: 32794898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of closed and open microwave waveguide graphs with preserved and partially violated time-reversal invariance.
    Zhang W; Zhang X; Che J; Lu J; Miski-Oglu M; Dietz B
    Phys Rev E; 2022 Oct; 106(4-1):044209. PubMed ID: 36397497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new spectral invariant for quantum graphs.
    Ławniczak M; Kurasov P; Bauch S; Białous M; Akhshani A; Sirko L
    Sci Rep; 2021 Jul; 11(1):15342. PubMed ID: 34321508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonuniversality in the spectral properties of time-reversal-invariant microwave networks and quantum graphs.
    Dietz B; Yunko V; Białous M; Bauch S; Ławniczak M; Sirko L
    Phys Rev E; 2017 May; 95(5-1):052202. PubMed ID: 28618543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.
    Gnutzmann S; Waltner D
    Phys Rev E; 2016 Dec; 94(6-1):062216. PubMed ID: 28085399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-section fluctuations in open microwave billiards and quantum graphs: The counting-of-maxima method revisited.
    Dietz B; Richter A; Samajdar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022904. PubMed ID: 26382473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explicit spectral formulas for scaling quantum graphs.
    Dabaghian Y; Blümel R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046206. PubMed ID: 15600494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuation properties of the eigenfrequencies and scattering matrix of closed and open unidirectional graphs with chaotic wave dynamics.
    Che J; Zhang X; Zhang W; Dietz B; Chai G
    Phys Rev E; 2022 Jul; 106(1-1):014211. PubMed ID: 35974604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.