These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

956 related articles for article (PubMed ID: 24730920)

  • 1. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coupled "AB" system: Rogue waves and modulation instabilities.
    Wu CF; Grimshaw RH; Chow KW; Chan HN
    Chaos; 2015 Oct; 25(10):103113. PubMed ID: 26520079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
    Chan HN; Malomed BA; Chow KW; Ding E
    Phys Rev E; 2016 Jan; 93(1):012217. PubMed ID: 26871083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.
    Liu TY; Chiu TL; Clarkson PA; Chow KW
    Chaos; 2017 Sep; 27(9):091103. PubMed ID: 28964137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects.
    Wang L; Zhang JH; Liu C; Li M; Qi FH
    Phys Rev E; 2016 Jun; 93(6):062217. PubMed ID: 27415265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super chirped rogue waves in optical fibers.
    Chen S; Zhou Y; Bu L; Baronio F; Soto-Crespo JM; Mihalache D
    Opt Express; 2019 Apr; 27(8):11370-11384. PubMed ID: 31052982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 9. Transverse Instability of Rogue Waves.
    Ablowitz MJ; Cole JT
    Phys Rev Lett; 2021 Sep; 127(10):104101. PubMed ID: 34533341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of four-wave mixing effect in the interactions between nonlinear modes of coupled generalized nonlinear Schrödinger equation.
    Vishnu Priya N; Senthilvelan M; Rangarajan G
    Chaos; 2019 Dec; 29(12):123135. PubMed ID: 31893664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network.
    Kengne E; Liu W
    Phys Rev E; 2020 Jul; 102(1-1):012203. PubMed ID: 32795018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation.
    Wang L; Zhang JH; Wang ZQ; Liu C; Li M; Qi FH; Guo R
    Phys Rev E; 2016 Jan; 93(1):012214. PubMed ID: 26871080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
    Chen S; Grelu P; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):011201. PubMed ID: 24580164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rogue wave observation in a water wave tank.
    Chabchoub A; Hoffmann NP; Akhmediev N
    Phys Rev Lett; 2011 May; 106(20):204502. PubMed ID: 21668234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.
    Zhong WP; Belić M; Zhang Y
    Opt Express; 2015 Feb; 23(3):3708-16. PubMed ID: 25836223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rogue waves and rational solutions of the Hirota equation.
    Ankiewicz A; Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent rogue wave structures and statistics in spontaneous modulation instability.
    Toenger S; Godin T; Billet C; Dias F; Erkintalo M; Genty G; Dudley JM
    Sci Rep; 2015 May; 5():10380. PubMed ID: 25993126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation.
    Liu W; Zhang J; Li X
    PLoS One; 2018; 13(2):e0192281. PubMed ID: 29432495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.