These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24730928)

  • 61. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism.
    da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED
    Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regular and chaotic motions in applied dynamics of a rigid body.
    Beletskii VV; Pivovarov ML; Starostin EL
    Chaos; 1996 Jun; 6(2):155-166. PubMed ID: 12780243
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Skew-orthogonal polynomials and random-matrix ensembles.
    Ghosh S; Pandey A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046221. PubMed ID: 12005990
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings.
    Ree S; Reichl LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):055205. PubMed ID: 12059632
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Frobenius-perron resonances for maps with a mixed phase space.
    Weber J; Haake F; Seba P
    Phys Rev Lett; 2000 Oct; 85(17):3620-3. PubMed ID: 11030965
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phase-locking for maps of a torus: a computer assisted study.
    Galkin OG
    Chaos; 1993 Jan; 3(1):73-82. PubMed ID: 12780016
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics.
    Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regular and chaotic phase synchronization of coupled circle maps.
    Osipov GV; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016216. PubMed ID: 11800777
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Universality of algebraic laws in hamiltonian systems.
    Venegeroles R
    Phys Rev Lett; 2009 Feb; 102(6):064101. PubMed ID: 19257592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves.
    Ishio H; Saichev AI; Sadreev AF; Berggren KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Statistics of Poincaré recurrences for maps with integrable and ergodic components.
    Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S
    Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recurrence-time statistics in non-Hamiltonian volume-preserving maps and flows.
    da Silva RM; Beims MW; Manchein C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022921. PubMed ID: 26382489
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Remarks on nodal volume statistics for regular and chaotic wave functions in various dimensions.
    Gnutzmann S; Lois S
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2007):20120521. PubMed ID: 24344343
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chaotic sound waves in a regular billiard.
    Schaadt K; Tufaile AP; Ellegaard C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026213. PubMed ID: 12636782
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fractional-power-law level statistics due to dynamical tunneling.
    Bäcker A; Ketzmerick R; Löck S; Mertig N
    Phys Rev Lett; 2011 Jan; 106(2):024101. PubMed ID: 21405229
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Experimental investigation of the elastic enhancement factor in a transient region between regular and chaotic dynamics.
    Ławniczak M; Białous M; Yunko V; Bauch S; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032925. PubMed ID: 25871190
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transport of chaotic trajectories from regions distant from or near to structures of regular motion of the Fermi-Ulam model.
    de Faria NB; Tavares DS; de Paula WC; Leonel ED; Ladeira DG
    Phys Rev E; 2016 Oct; 94(4-1):042208. PubMed ID: 27841619
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Universality in spectral statistics of open quantum graphs.
    Gutkin B; Osipov VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060901. PubMed ID: 26172651
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fractal Weyl laws for quantum decay in dynamical systems with a mixed phase space.
    Kopp M; Schomerus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026208. PubMed ID: 20365639
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental investigations of chaos-assisted tunneling in a microwave annular billiard.
    Hofferbert R; Alt H; Dembowski C; Gräf HD; Harney HL; Heine A; Rehfeld H; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046201. PubMed ID: 15903764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.