These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24730956)

  • 1. Deleterious effects of nonthermal electrons in shock ignition concept.
    Nicolaï P; Feugeas JL; Touati M; Ribeyre X; Gus'kov S; Tikhonchuk V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033107. PubMed ID: 24730956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited).
    Hohenberger M; Albert F; Palmer NE; Lee JJ; Döppner T; Divol L; Dewald EL; Bachmann B; MacPhee AG; LaCaille G; Bradley DK; Stoeckl C
    Rev Sci Instrum; 2014 Nov; 85(11):11D501. PubMed ID: 25430175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock-Augmented Ignition Approach to Laser Inertial Fusion.
    Scott RHH; Barlow D; Trickey W; Ruocco A; Glize K; Antonelli L; Khan M; Woolsey NC
    Phys Rev Lett; 2022 Nov; 129(19):195001. PubMed ID: 36399760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implosion experiments using glass ablators for direct-drive inertial confinement fusion.
    Smalyuk VA; Betti R; Delettrez JA; Glebov VY; Meyerhofer DD; Radha PB; Regan SP; Sangster TC; Sanz J; Seka W; Stoeckl C; Yaakobi B; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2010 Apr; 104(16):165002. PubMed ID: 20482057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-electron preheat and mitigation in polar-direct-drive experiments at the National Ignition Facility.
    Solodov AA; Rosenberg MJ; Stoeckl M; Christopherson AR; Betti R; Radha PB; Stoeckl C; Hohenberger M; Bachmann B; Epstein R; Follett RK; Seka W; Myatt JF; Michel P; Regan SP; Palastro JP; Froula DH; Campbell EM; Goncharov VN
    Phys Rev E; 2022 Nov; 106(5-2):055204. PubMed ID: 36559374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule.
    Döppner T; Thomas CA; Divol L; Dewald EL; Celliers PM; Bradley DK; Callahan DA; Dixit SN; Harte JA; Glenn SM; Haan SW; Izumi N; Kyrala GA; LaCaille G; Kline JK; Kruer WL; Ma T; MacKinnon AJ; McNaney JM; Meezan NB; Robey HF; Salmonson JD; Suter LJ; Zimmerman GB; Edwards MJ; MacGowan BJ; Kilkenny JD; Lindl JD; Van Wonterghem BM; Atherton LJ; Moses EI; Glenzer SH; Landen OL
    Phys Rev Lett; 2012 Mar; 108(13):135006. PubMed ID: 22540711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ablation pressure driven by an energetic electron beam in a dense plasma.
    Gus'kov S; Ribeyre X; Touati M; Feugeas JL; Nicolaï P; Tikhonchuk V
    Phys Rev Lett; 2012 Dec; 109(25):255004. PubMed ID: 23368476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres.
    Goncharov VN; Igumenshchev IV; Harding DR; Morse SFB; Hu SX; Radha PB; Froula DH; Regan SP; Sangster TC; Campbell EM
    Phys Rev Lett; 2020 Aug; 125(6):065001. PubMed ID: 32845678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.
    Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.
    Rosenberg MJ; Solodov AA; Myatt JF; Seka W; Michel P; Hohenberger M; Short RW; Epstein R; Regan SP; Campbell EM; Chapman T; Goyon C; Ralph JE; Barrios MA; Moody JD; Bates JW
    Phys Rev Lett; 2018 Feb; 120(5):055001. PubMed ID: 29481170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.
    Döppner T; Dewald EL; Divol L; Thomas CA; Burns S; Celliers PM; Izumi N; Kline JL; LaCaille G; McNaney JM; Prasad RR; Robey HF; Glenzer SH; Landen OL
    Rev Sci Instrum; 2012 Oct; 83(10):10E508. PubMed ID: 23127015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
    Hu SX; Collins LA; Goncharov VN; Boehly TR; Epstein R; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033111. PubMed ID: 25314551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock Ignition Laser-Plasma Interactions in Ignition-Scale Plasmas.
    Scott RHH; Glize K; Antonelli L; Khan M; Theobald W; Wei M; Betti R; Stoeckl C; Seaton AG; Arber TD; Barlow D; Goffrey T; Bennett K; Garbett W; Atzeni S; Casner A; Batani D; Li C; Woolsey N
    Phys Rev Lett; 2021 Aug; 127(6):065001. PubMed ID: 34420313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-cone ignition scheme for inertial confinement fusion.
    Zhang J; Wang WM; Yang XH; Wu D; Ma YY; Jiao JL; Zhang Z; Wu FY; Yuan XH; Li YT; Zhu JQ
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200015. PubMed ID: 33040660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials.
    Olson RE; Leeper RJ; Nobile A; Oertel JA
    Phys Rev Lett; 2003 Dec; 91(23):235002. PubMed ID: 14683189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Shock Ignition of Inertial Fusion Targets.
    Shang WL; Betti R; Hu SX; Woo K; Hao L; Ren C; Christopherson AR; Bose A; Theobald W
    Phys Rev Lett; 2017 Nov; 119(19):195001. PubMed ID: 29219482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the fast electron divergence in a solid target with multiple laser pulses.
    Volpe L; Feugeas JL; Nicolai P; Santos JJ; Touati M; Breil J; Batani D; Tikhonchuk V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063108. PubMed ID: 25615206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostics for fast ignition science (invited).
    MacPhee AG; Akli KU; Beg FN; Chen CD; Chen H; Clarke R; Hey DS; Freeman RR; Kemp AJ; Key MH; King JA; Le Pape S; Link A; Ma TY; Nakamura H; Offermann DT; Ovchinnikov VM; Patel PK; Phillips TW; Stephens RB; Town R; Tsui YY; Wei MS; Van Woerkom LD; Mackinnon AJ
    Rev Sci Instrum; 2008 Oct; 79(10):10F302. PubMed ID: 19044615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums.
    Dewald EL; Hartemann F; Michel P; Milovich J; Hohenberger M; Pak A; Landen OL; Divol L; Robey HF; Hurricane OA; Döppner T; Albert F; Bachmann B; Meezan NB; MacKinnon AJ; Callahan D; Edwards MJ
    Phys Rev Lett; 2016 Feb; 116(7):075003. PubMed ID: 26943541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopping of directed energetic electrons in high-temperature hydrogenic plasmas.
    Li CK; Petrasso RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):067401. PubMed ID: 15697562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.