These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24731136)
41. Darpones and water-soluble aminobutoxylated darpone derivatives are distinguished by matrix COMPARE analysis. Prühs C; Kunick C Bioorg Med Chem Lett; 2007 Apr; 17(7):1850-4. PubMed ID: 17296296 [TBL] [Abstract][Full Text] [Related]
42. Quinazoline-sulfonamides as potential antitumor agents: synthesis and biological testing. Alafeefy AM; Alqasoumi SI; Ashour AE; Alshebly MM J Enzyme Inhib Med Chem; 2013 Apr; 28(2):375-83. PubMed ID: 22468752 [TBL] [Abstract][Full Text] [Related]
43. Synthesis and antiproliferative activity of novel α-aminophosphonates. Mungara AK; Park YK; Lee KD Chem Pharm Bull (Tokyo); 2012; 60(12):1531-7. PubMed ID: 22986831 [TBL] [Abstract][Full Text] [Related]
44. Synthesis and cytotoxic effect on cancer cell lines and macrophages of novel progesterone derivatives having an ester or a carbamate function at C-3 and C-17. Chávez-Riveros A; Garrido M; Ramírez Apan MT; Zambrano A; Díaz M; Bratoeff E Eur J Med Chem; 2014 Jul; 82():498-505. PubMed ID: 24937183 [TBL] [Abstract][Full Text] [Related]
46. Design, synthesis and cytotoxic activity of novel spin-labeled rotenone derivatives. Liu YQ; Ohkoshi E; Li LH; Yang L; Lee KH Bioorg Med Chem Lett; 2012 Jan; 22(2):920-3. PubMed ID: 22204911 [TBL] [Abstract][Full Text] [Related]
47. (-)-Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. Toneto Novaes LF; Martins Avila C; Pelizzaro-Rocha KJ; Vendramini-Costa DB; Pereira Dias M; Barbosa Trivella DB; Ernesto de Carvalho J; Ferreira-Halder CV; Pilli RA ChemMedChem; 2015 Oct; 10(10):1687-99. PubMed ID: 26305900 [TBL] [Abstract][Full Text] [Related]
48. Lead identification of conformationally restricted β-lactam type combretastatin analogues: synthesis, antiproliferative activity and tubulin targeting effects. Carr M; Greene LM; Knox AJ; Lloyd DG; Zisterer DM; Meegan MJ Eur J Med Chem; 2010 Dec; 45(12):5752-66. PubMed ID: 20933304 [TBL] [Abstract][Full Text] [Related]
49. Synthesis and biological activity of some antitumor active derivatives from glycyrrhetinic acid. Csuk R; Schwarz S; Kluge R; Ströhl D Eur J Med Chem; 2010 Dec; 45(12):5718-23. PubMed ID: 20884085 [TBL] [Abstract][Full Text] [Related]
50. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Arafa RK; Hegazy GH; Piazza GA; Abadi AH Eur J Med Chem; 2013 May; 63():826-32. PubMed ID: 23584545 [TBL] [Abstract][Full Text] [Related]
51. Synthesis and antiproliferative activity of benzofuran-based analogs of cercosporamide against non-small cell lung cancer cell lines. Bazin MA; Bodero L; Tomasoni C; Rousseau B; Roussakis C; Marchand P Eur J Med Chem; 2013 Nov; 69():823-32. PubMed ID: 24121233 [TBL] [Abstract][Full Text] [Related]
52. Synthesis, biological activity, and quantitative structure-activity relationship study of azanaphthalimide and arylnaphthalimide derivatives. Braña MF; Gradillas A; Gómez A; Acero N; Llinares F; Muñoz-Mingarro D; Abradelo C; Rey-Stolle F; Yuste M; Campos J; Gallo MA; Espinosa A J Med Chem; 2004 Apr; 47(9):2236-42. PubMed ID: 15084122 [TBL] [Abstract][Full Text] [Related]
53. Expeditious synthesis of hippuristanol and congeners with potent antiproliferative activities. Li W; Dang Y; Liu JO; Yu B Chemistry; 2009 Oct; 15(40):10356-9. PubMed ID: 19746484 [No Abstract] [Full Text] [Related]
54. Stereoselective total synthesis of a novel regiomer of herbarumin I and its cytotoxic and antimicrobial activities. Jangili P; Kashanna J; Kumar CG; Poornachandra Y; Das B Bioorg Med Chem Lett; 2014 Jan; 24(1):325-7. PubMed ID: 24300737 [TBL] [Abstract][Full Text] [Related]
55. A new strategy for the synthesis of crucigasterin A, and cytotoxic activity of this compound and its related analogues. Kumar JN; Reddy PR; Das B; Kumar CG; Sujitha P Bioorg Med Chem Lett; 2013 Sep; 23(18):5192-4. PubMed ID: 23932340 [TBL] [Abstract][Full Text] [Related]
56. Aziridines from alkenyl-β-D-galactopyranoside derivatives: Stereoselective synthesis and in vitro selective anticancer activity. Vega-Pérez JM; Palo-Nieto C; Vega-Holm M; Góngora-Vargas P; Calderón-Montaño JM; Burgos-Morón E; López-Lázaro M; Iglesias-Guerra F Eur J Med Chem; 2013; 70():380-92. PubMed ID: 24177365 [TBL] [Abstract][Full Text] [Related]
58. D-ring modified novel isosteviol derivatives: design, synthesis and cytotoxic activity evaluation. Zhang T; Lu LH; Liu H; Wang JW; Wang RX; Zhang YX; Tao JC Bioorg Med Chem Lett; 2012 Sep; 22(18):5827-32. PubMed ID: 22901386 [TBL] [Abstract][Full Text] [Related]
59. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Kumar D; Kumar NM; Akamatsu K; Kusaka E; Harada H; Ito T Bioorg Med Chem Lett; 2010 Jul; 20(13):3916-9. PubMed ID: 20627724 [TBL] [Abstract][Full Text] [Related]
60. Synthesis of new 9-hydroxy-α- and 7-hydroxy-β-pyran naphthoquinones and cytotoxicity against cancer cell lines. da Rocha DR; de Souza AC; Resende JA; Santos WC; dos Santos EA; Pessoa C; de Moraes MO; Costa-Lotufo LV; Montenegro RC; Ferreira VF Org Biomol Chem; 2011 Jun; 9(11):4315-22. PubMed ID: 21487631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]