These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 24731137)
1. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. Sevilla M; Fuertes AB ACS Nano; 2014 May; 8(5):5069-78. PubMed ID: 24731137 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. Fuertes AB; Sevilla M ACS Appl Mater Interfaces; 2015 Feb; 7(7):4344-53. PubMed ID: 25675347 [TBL] [Abstract][Full Text] [Related]
3. Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Wang L; Mu G; Tian C; Sun L; Zhou W; Yu P; Yin J; Fu H ChemSusChem; 2013 May; 6(5):880-9. PubMed ID: 23606450 [TBL] [Abstract][Full Text] [Related]
5. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. Wang H; Xu Z; Kohandehghan A; Li Z; Cui K; Tan X; Stephenson TJ; King'ondu CK; Holt CM; Olsen BC; Tak JK; Harfield D; Anyia AO; Mitlin D ACS Nano; 2013 Jun; 7(6):5131-41. PubMed ID: 23651213 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. Yun YS; Park MH; Hong SJ; Lee ME; Park YW; Jin HJ ACS Appl Mater Interfaces; 2015 Feb; 7(6):3684-90. PubMed ID: 25612009 [TBL] [Abstract][Full Text] [Related]
7. Hierarchically porous carbon derived from potassium-citrate-loaded poplar catkin for high performance supercapacitors. Luo X; Li S; Xu H; Zou X; Wang Y; Cheng J; Li X; Shen Z; Wang Y; Cui L J Colloid Interface Sci; 2021 Jan; 582(Pt B):940-949. PubMed ID: 32927174 [TBL] [Abstract][Full Text] [Related]
8. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. Kim T; Jung G; Yoo S; Suh KS; Ruoff RS ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569 [TBL] [Abstract][Full Text] [Related]
9. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. Gao H; Xiao F; Ching CB; Duan H ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683 [TBL] [Abstract][Full Text] [Related]
10. Porous Hybrid Composites of Few-Layer MoS2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance. Ji H; Liu C; Wang T; Chen J; Mao Z; Zhao J; Hou W; Yang G Small; 2015 Dec; 11(48):6480-90. PubMed ID: 26551452 [TBL] [Abstract][Full Text] [Related]
11. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. Yan J; Wang Q; Wei T; Jiang L; Zhang M; Jing X; Fan Z ACS Nano; 2014 May; 8(5):4720-9. PubMed ID: 24730514 [TBL] [Abstract][Full Text] [Related]
12. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. Wang J; Ding B; Xu Y; Shen L; Dou H; Zhang X ACS Appl Mater Interfaces; 2015 Oct; 7(40):22284-91. PubMed ID: 26399912 [TBL] [Abstract][Full Text] [Related]
13. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte. Yang CH; Huang PL; Luo XF; Wang CH; Li C; Wu YH; Chang JK ChemSusChem; 2015 May; 8(10):1779-86. PubMed ID: 25900279 [TBL] [Abstract][Full Text] [Related]
14. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application. Peng H; Ma G; Sun K; Mu J; Zhang Z; Lei Z ACS Appl Mater Interfaces; 2014 Dec; 6(23):20795-803. PubMed ID: 25372656 [TBL] [Abstract][Full Text] [Related]
15. From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: a value added journey for shredded office paper. Puthusseri D; Aravindan V; Anothumakkool B; Kurungot S; Madhavi S; Ogale S Small; 2014 Nov; 10(21):4395-402. PubMed ID: 25044804 [TBL] [Abstract][Full Text] [Related]
16. In-Situ-Activated N-Doped Mesoporous Carbon from a Protic Salt and Its Performance in Supercapacitors. Mendes TC; Xiao C; Zhou F; Li H; Knowles GP; Hilder M; Somers A; Howlett PC; MacFarlane DR ACS Appl Mater Interfaces; 2016 Dec; 8(51):35243-35252. PubMed ID: 27977114 [TBL] [Abstract][Full Text] [Related]
17. From Soybean residue to advanced supercapacitors. Ferrero GA; Fuertes AB; Sevilla M Sci Rep; 2015 Nov; 5():16618. PubMed ID: 26568473 [TBL] [Abstract][Full Text] [Related]
18. All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. Liao Q; Li N; Jin S; Yang G; Wang C ACS Nano; 2015 May; 9(5):5310-7. PubMed ID: 25938705 [TBL] [Abstract][Full Text] [Related]
19. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids. Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]