BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 24731155)

  • 1. Evaluating the performance of copula models in phase I-II clinical trials under model misspecification.
    Cunanan K; Koopmeiners JS
    BMC Med Res Methodol; 2014 Apr; 14():51. PubMed ID: 24731155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
    Koopmeiners JS; Modiano J
    Clin Trials; 2014 Feb; 11(1):38-48. PubMed ID: 24082004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trivariate continual reassessment method for phase I/II trials of toxicity, efficacy, and surrogate efficacy.
    Zhong W; Koopmeiners JS; Carlin BP
    Stat Med; 2012 Dec; 31(29):3885-95. PubMed ID: 22807126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 3 + 3 design in dose-finding studies with small sample sizes: Pitfalls and possible remedies.
    Chiuzan C; Dehbi HM
    Clin Trials; 2024 Jun; 21(3):350-357. PubMed ID: 38618916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible use of copula-type model for dose-finding in drug combination clinical trials.
    Hashizume K; Tshuchida J; Sozu T
    Biometrics; 2022 Dec; 78(4):1651-1661. PubMed ID: 34181760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase I/II dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization.
    Riviere MK; Yuan Y; Jourdan JH; Dubois F; Zohar S
    Stat Methods Med Res; 2018 Feb; 27(2):466-479. PubMed ID: 26988926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian dose-finding design for phase I/II clinical trials with nonignorable dropouts.
    Guo B; Yuan Y
    Stat Med; 2015 May; 34(10):1721-32. PubMed ID: 25626676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive multi-stage phase I dose-finding design incorporating continuous efficacy and toxicity data from multiple treatment cycles.
    Du Y; Yin J; Sargent DJ; Mandrekar SJ
    J Biopharm Stat; 2019; 29(2):271-286. PubMed ID: 30403559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escalation with overdose control using all toxicities and time to event toxicity data in cancer Phase I clinical trials.
    Chen Z; Cui Y; Owonikoko TK; Wang Z; Li Z; Luo R; Kutner M; Khuri FR; Kowalski J
    Contemp Clin Trials; 2014 Mar; 37(2):322-32. PubMed ID: 24530487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of model choices for the Continual Reassessment Method in phase I cancer trials.
    Paoletti X; Kramar A
    Stat Med; 2009 Oct; 28(24):3012-28. PubMed ID: 19672839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
    Lin R; Yin G
    Stat Med; 2017 Nov; 36(26):4106-4120. PubMed ID: 28786138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies.
    Zhou Y; Lee JJ; Yuan Y
    Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian adaptive design for cancer phase I trials using a flexible range of doses.
    Tighiouart M; Cook-Wiens G; Rogatko A
    J Biopharm Stat; 2018; 28(3):562-574. PubMed ID: 28858566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian adaptive design for estimating the maximum tolerated dose curve using drug combinations in cancer phase I clinical trials.
    Tighiouart M; Li Q; Rogatko A
    Stat Med; 2017 Jan; 36(2):280-290. PubMed ID: 27060889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential or combined designs for Phase I/II clinical trials? A simulation study.
    Rossoni C; Bardet A; Geoerger B; Paoletti X
    Clin Trials; 2019 Dec; 16(6):635-644. PubMed ID: 31538815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
    Guo B; Li Y
    Stat Med; 2015 Feb; 34(5):859-75. PubMed ID: 25413162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Bayesian methods for cancer phase I clinical trials. Dose escalation with overdose control.
    Tighiouart M; Rogatko A; Babb JS
    Stat Med; 2005 Jul; 24(14):2183-96. PubMed ID: 15909291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian designs of phase II oncology trials to select maximum effective dose assuming monotonic dose-response relationship.
    Guo B; Li Y
    BMC Med Res Methodol; 2014 Jul; 14():95. PubMed ID: 25074481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose escalation with overdose control using a quasi-continuous toxicity score in cancer Phase I clinical trials.
    Chen Z; Tighiouart M; Kowalski J
    Contemp Clin Trials; 2012 Sep; 33(5):949-58. PubMed ID: 22561391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.