BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24731262)

  • 1. Phosphorylation of Bacillus subtilis gene regulator AbrB modulates its DNA-binding properties.
    Kobir A; Poncet S; Bidnenko V; Delumeau O; Jers C; Zouhir S; Grenha R; Nessler S; Noirot P; Mijakovic I
    Mol Microbiol; 2014 Jun; 92(5):1129-41. PubMed ID: 24731262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression.
    Strauch MA; Bobay BG; Cavanagh J; Yao F; Wilson A; Le Breton Y
    J Bacteriol; 2007 Nov; 189(21):7720-32. PubMed ID: 17720793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-step regulatory circuit involving Spo0A-AbrB activates mersacidin biosynthesis in Bacillus subtilis.
    Lilge L; Kuipers OP
    Int J Antimicrob Agents; 2024 May; 63(5):107155. PubMed ID: 38527561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct regulatory systems control pulcherrimin biosynthesis in Bacillus subtilis.
    Fernandez NL; Simmons LA
    PLoS Genet; 2024 May; 20(5):e1011283. PubMed ID: 38753885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803.
    Oliveira P; Lindblad P
    J Bacteriol; 2008 Feb; 190(3):1011-9. PubMed ID: 18039761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.
    Tucker AT; Bobay BG; Banse AV; Olson AL; Soderblom EJ; Moseley MA; Thompson RJ; Varney KM; Losick R; Cavanagh J
    J Mol Biol; 2014 May; 426(9):1911-24. PubMed ID: 24534728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent and interchangeable multimerization domains of the AbrB, Abh, and SpoVT global regulatory proteins.
    Yao F; Strauch MA
    J Bacteriol; 2005 Sep; 187(18):6354-62. PubMed ID: 16159768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connection between protein-tyrosine kinase inhibition and coping with oxidative stress in
    Shi L; Derouiche A; Pandit S; Alazmi M; Ventroux M; Køhler JB; Noirot-Gros MF; Gao X; Mijakovic I
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2321890121. PubMed ID: 38857388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Distinct Regulatory Systems Control Pulcherrimin Biosynthesis in
    Fernandez NL; Simmons LA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk.
    Shi L; Pigeonneau N; Ventroux M; Derouiche A; Bidnenko V; Mijakovic I; Noirot-Gros MF
    Front Microbiol; 2014; 5():538. PubMed ID: 25374563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis.
    Salzberg LI; Botella E; Hokamp K; Antelmann H; Maaß S; Becher D; Noone D; Devine KM
    J Bacteriol; 2015 Apr; 197(8):1492-506. PubMed ID: 25666134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of TnrA-binding sites provides new insights into the TnrA regulon in Bacillus subtilis.
    Mirouze N; Bidnenko E; Noirot P; Auger S
    Microbiologyopen; 2015 Jun; 4(3):423-35. PubMed ID: 25755103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues.
    Shi L; Pigeonneau N; Ravikumar V; Dobrinic P; Macek B; Franjevic D; Noirot-Gros MF; Mijakovic I
    Front Microbiol; 2014; 5():495. PubMed ID: 25278935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.
    Mars RA; Nicolas P; Ciccolini M; Reilman E; Reder A; Schaffer M; Mäder U; Völker U; van Dijl JM; Denham EL
    PLoS Genet; 2015 Mar; 11(3):e1005046. PubMed ID: 25790031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.
    Schumacher MA; Chinnam NB; Cuthbert B; Tonthat NK; Whitfill T
    Genes Dev; 2015 Feb; 29(4):451-64. PubMed ID: 25691471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular timeline of a reviving bacterial spore.
    Sinai L; Rosenberg A; Smith Y; Segev E; Ben-Yehuda S
    Mol Cell; 2015 Feb; 57(4):695-707. PubMed ID: 25661487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexity of bacterial phosphorylation interaction network.
    Barák I
    Front Microbiol; 2014; 5():725. PubMed ID: 25566234
    [No Abstract]   [Full Text] [Related]  

  • 18. Far from being well understood: multiple protein phosphorylation events control cell differentiation in Bacillus subtilis at different levels.
    Gerwig J; Stülke J
    Front Microbiol; 2014; 5():704. PubMed ID: 25540643
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and DNA-binding traits of the transition state regulator AbrB.
    Olson AL; Tucker AT; Bobay BG; Soderblom EJ; Moseley MA; Thompson RJ; Cavanagh J
    Structure; 2014 Nov; 22(11):1650-6. PubMed ID: 25308864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sporulation during growth in a gut isolate of Bacillus subtilis.
    Serra CR; Earl AM; Barbosa TM; Kolter R; Henriques AO
    J Bacteriol; 2014 Dec; 196(23):4184-96. PubMed ID: 25225273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.