BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24731748)

  • 1. High class II-associated invariant chain peptide expression on residual leukemic cells is associated with increased relapse risk in acute myeloid leukemia.
    van den Ancker W; van Luijn MM; Chamuleau ME; Kelder A; Feller N; Terwijn M; Zevenbergen A; Schuurhuis GJ; van Ham SM; Westers TM; Ossenkoppele GJ; van de Loosdrecht AA
    Leuk Res; 2014 Jun; 38(6):691-3. PubMed ID: 24731748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4+ T cells.
    van Luijn MM; van den Ancker W; Chamuleau ME; Zevenbergen A; Westers TM; Ossenkoppele GJ; van Ham SM; van de Loosdrecht AA
    Cancer Res; 2011 Apr; 71(7):2507-17. PubMed ID: 21310823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T-cell responses.
    van Luijn MM; Chamuleau ME; Thompson JA; Ostrand-Rosenberg S; Westers TM; Souwer Y; Ossenkoppele GJ; van Ham SM; van de Loosdrecht AA
    Haematologica; 2010 Mar; 95(3):485-93. PubMed ID: 19903675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class II-associated invariant chain peptide expression on myeloid leukemic blasts predicts poor clinical outcome.
    Chamuleau ME; Souwer Y; Van Ham SM; Zevenbergen A; Westers TM; Berkhof J; Meijer CJ; van de Loosdrecht AA; Ossenkoppele GJ
    Cancer Res; 2004 Aug; 64(16):5546-50. PubMed ID: 15313888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of cell heterogeneity and immunophenotypic changes on monitoring minimal residual disease in acute myeloid leukemia.
    Zelezníková T; Babusíková O
    Neoplasma; 2006; 53(6):500-6. PubMed ID: 17167719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Class II-associated invariant chain peptide as predictive immune marker in minimal residual disease in acute myeloid leukemia.
    van Luijn MM; van den Ancker W; van Ham SM; van de Loosdrecht AA
    Oncoimmunology; 2014 Dec; 3(12):e941737. PubMed ID: 25964856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wilms' tumor gene 1 transcript levels in leukapheresis of peripheral blood hematopoietic cells predict relapse risk in patients autografted for acute myeloid leukemia.
    Messina C; Candoni A; Carrabba MG; Tresoldi C; Sala E; Tassara M; Crippa A; Peccatori J; Assanelli A; Gattillo S; Bellio L; Fanin R; Ciceri F; Bernardi M
    Biol Blood Marrow Transplant; 2014 Oct; 20(10):1586-91. PubMed ID: 24954546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Minimal residual disease detection in acute leukemia patients by flow cytometric assay of cross-lineage antigen expression].
    Cho YU; Park CJ; Cha CH; Chi HS; Jang S; Kim MJ; Lee KH; Lee JH; Lee JH; Seo JJ; Im HJ
    Korean J Lab Med; 2010 Dec; 30(6):533-9. PubMed ID: 21157135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic impact of minimal residual disease analysis by flow cytometry in patients with acute myeloid leukemia before and after allogeneic hemopoietic stem cell transplantation.
    Bastos-Oreiro M; Perez-Corral A; Martínez-Laperche C; Bento L; Pascual C; Kwon M; Balsalobre P; Muñoz C; Buces E; Serrano D; Gayoso J; Buño I; Anguita J; Diéz-Martín JL
    Eur J Haematol; 2014 Sep; 93(3):239-46. PubMed ID: 24702162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes.
    van Luijn MM; Chamuleau ME; Ressing ME; Wiertz EJ; Ostrand-Rosenberg S; Souwer Y; Zevenbergen A; Ossenkoppele GJ; van de Loosdrecht AA; van Ham SM
    Cancer Immunol Immunother; 2010 Dec; 59(12):1825-38. PubMed ID: 20820776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive factors of relapse and survival in childhood acute myeloid leukemia: role of minimal residual disease.
    Rizzari C; Cazzaniga G; Coliva T; De Angelis C; Conter V
    Expert Rev Anticancer Ther; 2011 Sep; 11(9):1391-401. PubMed ID: 21929313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia.
    Buccisano F; Maurillo L; Gattei V; Del Poeta G; Del Principe MI; Cox MC; Panetta P; Consalvo MI; Mazzone C; Neri B; Ottaviani L; Fraboni D; Tamburini A; Lo-Coco F; Amadori S; Venditti A
    Leukemia; 2006 Oct; 20(10):1783-9. PubMed ID: 16838027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of minimal residual disease before and after myeloablative hematopoietic cell transplantation for acute leukemia.
    Appelbaum FR
    Best Pract Res Clin Haematol; 2013 Sep; 26(3):279-84. PubMed ID: 24309531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study.
    Terwijn M; van Putten WL; Kelder A; van der Velden VH; Brooimans RA; Pabst T; Maertens J; Boeckx N; de Greef GE; Valk PJ; Preijers FW; Huijgens PC; Dräger AM; Schanz U; Jongen-Lavrecic M; Biemond BJ; Passweg JR; van Gelder M; Wijermans P; Graux C; Bargetzi M; Legdeur MC; Kuball J; de Weerdt O; Chalandon Y; Hess U; Verdonck LF; Gratama JW; Oussoren YJ; Scholten WJ; Slomp J; Snel AN; Vekemans MC; Löwenberg B; Ossenkoppele GJ; Schuurhuis GJ
    J Clin Oncol; 2013 Nov; 31(31):3889-97. PubMed ID: 24062400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of minimal residual disease in acute myeloid leukemia.
    Gerhartz HH; Schmetzer H
    Leukemia; 1990 Jul; 4(7):508-16. PubMed ID: 1695705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High prognostic value of minimal residual disease detected by flow-cytometry-enhanced fluorescence in situ hybridization in core-binding factor acute myeloid leukemia (CBF-AML).
    Wang L; Gao L; Xu S; Gong S; Liu M; Qiu H; Xu X; Ni X; Chen L; Lu S; Chen J; Song X; Zhang W; Yang J; Hu X; Wang J
    Ann Hematol; 2014 Oct; 93(10):1685-94. PubMed ID: 24844781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poor outcome with nonmyeloablative conditioning regimen before cord blood transplantation for patients with high-risk acute myeloid leukemia compared with matched related or unrelated donor transplantation.
    Devillier R; Harbi S; Fürst S; Crocchiolo R; El-Cheikh J; Castagna L; Etienne A; Calmels B; Lemarie C; Prebet T; Granata A; Charbonnier A; Rey J; Chabannon C; Faucher C; Vey N; Blaise D
    Biol Blood Marrow Transplant; 2014 Oct; 20(10):1560-5. PubMed ID: 24933658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal residual disease markers before and after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia.
    Dominietto A
    Curr Opin Hematol; 2011 Nov; 18(6):381-7. PubMed ID: 21986564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leukemia-associated aberrant immunophenotype in patients with acute myeloid leukemia: changes at refractory disease or first relapse and clinicopathological findings.
    Cui W; Zhang D; Cunningham MT; Tilzer L
    Int J Lab Hematol; 2014 Dec; 36(6):636-49. PubMed ID: 24602197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia.
    van Luijn MM; van den Ancker W; Chamuleau ME; Ossenkoppele GJ; van Ham SM; van de Loosdrecht AA
    Immunotherapy; 2010 Jan; 2(1):85-97. PubMed ID: 20635891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.