BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24731877)

  • 1. Contributions of peripheral, spinal, and supraspinal actions to analgesia.
    Sawynok J; Liu J
    Eur J Pharmacol; 2014 Jul; 734():114-21. PubMed ID: 24731877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central Nervous System Targets: Supraspinal Mechanisms of Analgesia.
    Bannister K; Dickenson AH
    Neurotherapeutics; 2020 Jul; 17(3):839-845. PubMed ID: 32700132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contributions of peripheral versus supraspinal or spinal opioid receptors to the antinociception of systemic opioids.
    Khalefa BI; Shaqura M; Al-Khrasani M; Fürst S; Mousa SA; Schäfer M
    Eur J Pain; 2012 May; 16(5):690-705. PubMed ID: 22337491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA(B) receptor-mediated selective peripheral analgesia by the non-proteinogenic amino acid, isovaline.
    Whitehead RA; Puil E; Ries CR; Schwarz SK; Wall RA; Cooke JE; Putrenko I; Sallam NA; MacLeod BA
    Neuroscience; 2012 Jun; 213():154-60. PubMed ID: 22525135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antidepressants as analgesics: an overview of central and peripheral mechanisms of action.
    Sawynok J; Esser MJ; Reid AR
    J Psychiatry Neurosci; 2001 Jan; 26(1):21-9. PubMed ID: 11212590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topical and peripherally acting analgesics.
    Sawynok J
    Pharmacol Rev; 2003 Mar; 55(1):1-20. PubMed ID: 12615951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripherally-acting opioids.
    Smith HS
    Pain Physician; 2008 Mar; 11(2 Suppl):S121-32. PubMed ID: 18443636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient allodynia pain models in mice for early assessment of analgesic activity.
    Gil DW; Cheevers CV; Donello JE
    Br J Pharmacol; 2008 Feb; 153(4):769-74. PubMed ID: 17700719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripherally acting opioids and clinical implications for pain control.
    Sehgal N; Smith HS; Manchikanti L
    Pain Physician; 2011; 14(3):249-58. PubMed ID: 21587328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent expression of two pharmacologically distinct supraspinal mu analgesic systems in genetically different mouse strains.
    Pick CG; Nejat RJ; Pasternak GW
    J Pharmacol Exp Ther; 1993 Apr; 265(1):166-71. PubMed ID: 8386234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak.
    Rossi GC; Bodnar RJ
    Cell Mol Neurobiol; 2021 Jul; 41(5):863-897. PubMed ID: 32970288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal alpha(2)-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury.
    Takasu K; Honda M; Ono H; Tanabe M
    Br J Pharmacol; 2006 May; 148(2):233-44. PubMed ID: 16582934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine.
    Yeung JC; Rudy TA
    J Pharmacol Exp Ther; 1980 Dec; 215(3):633-42. PubMed ID: 6893721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat.
    Duric V; McCarson KE
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1235-43. PubMed ID: 16956981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blocking mu opioid receptors in the spinal cord prevents the analgesic action by subsequent systemic opioids.
    Chen SR; Pan HL
    Brain Res; 2006 Apr; 1081(1):119-25. PubMed ID: 16499888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.
    Fürst S; Riba P; Friedmann T; Tímar J; Al-Khrasani M; Obara I; Makuch W; Spetea M; Schütz J; Przewlocki R; Przewlocka B; Schmidhammer H
    J Pharmacol Exp Ther; 2005 Feb; 312(2):609-18. PubMed ID: 15383636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal actions of nonsteroidal anti-inflammatory drugs.
    Cherng CH; Wong CS; Ho ST
    Acta Anaesthesiol Sin; 1996 Jun; 34(2):81-8. PubMed ID: 9084527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Which way for the administration of alpha 2-adrenergic agents to obtain the best analgesia?].
    Bernard JM; Kick O; Bonnet F
    Cah Anesthesiol; 1994; 42(2):223-8. PubMed ID: 7916262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal and peripheral adenosine A₁ receptors contribute to antinociception by tramadol in the formalin test in mice.
    Sawynok J; Reid AR; Liu J
    Eur J Pharmacol; 2013 Aug; 714(1-3):373-8. PubMed ID: 23872384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of supraspinal and peripheral naloxonazine-insensitive opioid receptor sites in the expression of μ-opioid receptor agonist-induced physical dependence.
    Mori T; Komiya S; Uzawa N; Inoue K; Itoh T; Aoki S; Shibasaki M; Suzuki T
    Eur J Pharmacol; 2013 Sep; 715(1-3):238-45. PubMed ID: 23707904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.