BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24731966)

  • 21. Comparison of tight junction permeability for albumin in iris pigment epithelium and retinal pigment epithelium in vitro.
    Rezai KA; Lappas A; Kohen L; Wiedemann P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 1997 Jan; 235(1):48-55. PubMed ID: 9034842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastructural localization of blood-retinal barrier breakdown in diabetic and galactosemic rats.
    Vinores SA; McGehee R; Lee A; Gadegbeku C; Campochiaro PA
    J Histochem Cytochem; 1990 Sep; 38(9):1341-52. PubMed ID: 2117624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro model of the outer blood-retina barrier.
    Steuer H; Jaworski A; Stoll D; Schlosshauer B
    Brain Res Brain Res Protoc; 2004 Apr; 13(1):26-36. PubMed ID: 15063838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinal pigment epithelial cells from dystrophic rats form normal tight junctions in vitro.
    Chang CW; Defoe DM; Caldwell RB
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):188-95. PubMed ID: 9008643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium.
    Sun R; Peng S; Chen X; Zhang H; Rizzolo LJ
    Mol Vis; 2008; 14():2237-62. PubMed ID: 19057659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions.
    Luo Y; Fukuhara M; Weitzman M; Rizzolo LJ
    Brain Res; 2006 Sep; 1110(1):55-63. PubMed ID: 16859655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Claudin-19 and the barrier properties of the human retinal pigment epithelium.
    Peng S; Rao VS; Adelman RA; Rizzolo LJ
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1392-403. PubMed ID: 21071746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative in situ analysis of claudin expression at the blood-retinal barrier.
    Xu H; Liversidge J
    Methods Mol Biol; 2011; 762():321-31. PubMed ID: 21717367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The blood-retinal barrier: structure and functional significance.
    Runkle EA; Antonetti DA
    Methods Mol Biol; 2011; 686():133-48. PubMed ID: 21082369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood-retinal barrier dysfunction.
    Kim JH; Lee SJ; Kim KW; Yu YS; Kim JH
    Int J Biochem Cell Biol; 2012 May; 44(5):808-14. PubMed ID: 22349216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction.
    Ho TC; Yang YC; Cheng HC; Wu AC; Chen SL; Tsao YP
    Biochem Biophys Res Commun; 2006 Apr; 342(2):372-8. PubMed ID: 16483542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmotic stress in an in vitro model of the outer blood-retinal barrier.
    Orgül S; Reuter U; Kain HL
    Ger J Ophthalmol; 1993 Nov; 2(6):436-43. PubMed ID: 8312831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of conditioned media collected from cultured adult versus fetal retinal pigment epithelial cells.
    Kolomeyer AM; Sugino IK; Zarbin MA
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5973-86. PubMed ID: 21421881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes.
    Subrizi A; Hiidenmaa H; Ilmarinen T; Nymark S; Dubruel P; Uusitalo H; Yliperttula M; Urtti A; Skottman H
    Biomaterials; 2012 Nov; 33(32):8047-54. PubMed ID: 22892561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of claudin-5 overexpression on the interactions of claudin-1 and -2 and barrier function in retinal cells.
    Tian R; Luo Y; Liu Q; Cai M; Li J; Sun W; Wang J; He C; Liu Y; Liu X
    Curr Mol Med; 2014; 14(9):1226-37. PubMed ID: 25323998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of all-trans retinoic acid on the barrier function in human retinal pigment epithelial cells.
    Rong J; Liu S
    Biochem Biophys Res Commun; 2011 Apr; 407(3):605-9. PubMed ID: 21426899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development.
    Rahner C; Fukuhara M; Peng S; Kojima S; Rizzolo LJ
    J Cell Sci; 2004 Jul; 117(Pt 15):3307-18. PubMed ID: 15226402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype.
    Huang C; Zhang J; Ao M; Li Y; Zhang C; Xu Y; Li X; Wang W
    J Cell Biochem; 2012 Feb; 113(2):590-8. PubMed ID: 21948619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of subretinal fluid: experimental and clinical studies.
    Marmor MF
    Eye (Lond); 1990; 4 ( Pt 2)():340-4. PubMed ID: 2199242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The blood-retinal barrier in experimental autoimmune uveoretinitis. Leukocyte interactions and functional damage.
    Greenwood J; Howes R; Lightman S
    Lab Invest; 1994 Jan; 70(1):39-52. PubMed ID: 8302017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.