These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24731971)
1. Application of physiologically-based toxicokinetic modelling in oral-to-dermal extrapolation of threshold doses of cosmetic ingredients. Gajewska M; Worth A; Urani C; Briesen H; Schramm KW Toxicol Lett; 2014 Jun; 227(3):189-202. PubMed ID: 24731971 [TBL] [Abstract][Full Text] [Related]
2. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine. Bessems JGM; Paini A; Gajewska M; Worth A Toxicology; 2017 Dec; 392():119-129. PubMed ID: 28288858 [TBL] [Abstract][Full Text] [Related]
3. Physiologically based toxicokinetic modelling as a tool to assess target organ toxicity in route-to-route extrapolation--the case of coumarin. Mielke H; Abraham K; Götz M; Vieth B; Lampen A; Luch A; Gundert-Remy U Toxicol Lett; 2011 Apr; 202(2):100-10. PubMed ID: 21291965 [TBL] [Abstract][Full Text] [Related]
4. In vitro-to-in vivo correlation of the skin penetration, liver clearance and hepatotoxicity of caffeine. Gajewska M; Paini A; Sala Benito JV; Burton J; Worth A; Urani C; Briesen H; Schramm KW Food Chem Toxicol; 2015 Jan; 75():39-49. PubMed ID: 25455898 [TBL] [Abstract][Full Text] [Related]
5. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results. Jongeneelen FJ; Berge WF Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005 [TBL] [Abstract][Full Text] [Related]
6. The acute effects of daily nicotine intake on heart rate--a toxicokinetic and toxicodynamic modelling study. Gajewska M; Worth A; Urani C; Briesen H; Schramm KW Regul Toxicol Pharmacol; 2014 Oct; 70(1):312-24. PubMed ID: 25066669 [TBL] [Abstract][Full Text] [Related]
7. Simulation of urinary excretion of 1-hydroxypyrene in various scenarios of exposure to polycyclic aromatic hydrocarbons with a generic, cross-chemical predictive PBTK-model. Jongeneelen F; ten Berge W Int Arch Occup Environ Health; 2012 Aug; 85(6):689-702. PubMed ID: 22038087 [TBL] [Abstract][Full Text] [Related]
8. Assessing the safety of cosmetic chemicals: Consideration of a flux decision tree to predict dermally delivered systemic dose for comparison with oral TTC (Threshold of Toxicological Concern). Williams FM; Rothe H; Barrett G; Chiodini A; Whyte J; Cronin MT; Monteiro-Riviere NA; Plautz J; Roper C; Westerhout J; Yang C; Guy RH Regul Toxicol Pharmacol; 2016 Apr; 76():174-86. PubMed ID: 26825378 [TBL] [Abstract][Full Text] [Related]
9. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics. Elmore AR Int J Toxicol; 2005; 24 Suppl 2():51-111. PubMed ID: 16154915 [TBL] [Abstract][Full Text] [Related]
10. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate. Cosmetic Ingredient Review Expert Panel Int J Toxicol; 2008; 27 Suppl 1():1-43. PubMed ID: 18569160 [TBL] [Abstract][Full Text] [Related]
11. Physiologically based toxicokinetic modelling of Tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes. Ding J; He W; Sha W; Shan G; Zhu L; Zhu L; Feng J Ecotoxicol Environ Saf; 2024 Feb; 271():115976. PubMed ID: 38232524 [TBL] [Abstract][Full Text] [Related]
12. Linking existing in vitro dermal absorption data to physicochemical properties: Contribution to the design of a weight-of-evidence approach for the safety evaluation of cosmetic ingredients with low dermal bioavailability. Ates G; Steinmetz FP; Doktorova TY; Madden JC; Rogiers V Regul Toxicol Pharmacol; 2016 Apr; 76():74-8. PubMed ID: 26807814 [TBL] [Abstract][Full Text] [Related]
14. The contribution of dermal exposure to the internal exposure of bisphenol A in man. Mielke H; Partosch F; Gundert-Remy U Toxicol Lett; 2011 Jul; 204(2-3):190-8. PubMed ID: 21571050 [TBL] [Abstract][Full Text] [Related]
15. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. DeWoskin RS; Sweeney LM; Teeguarden JG; Sams R; Vandenberg J Food Chem Toxicol; 2013 Aug; 58():506-21. PubMed ID: 23707562 [TBL] [Abstract][Full Text] [Related]
16. Risk assessment of skin lightening cosmetics containing hydroquinone. Matsumoto M; Todo H; Akiyama T; Hirata-Koizumi M; Sugibayashi K; Ikarashi Y; Ono A; Hirose A; Yokoyama K Regul Toxicol Pharmacol; 2016 Nov; 81():128-135. PubMed ID: 27521610 [TBL] [Abstract][Full Text] [Related]
17. Physiologically-based toxicokinetic modeling of human dermal exposure to diethyl phthalate: Application to health risk assessment. Hu M; Zhang Y; Zhan M; He G; Qu W; Zhou Y Chemosphere; 2022 Nov; 307(Pt 2):135931. PubMed ID: 35940406 [TBL] [Abstract][Full Text] [Related]
18. NTP technical report on the toxicity studies of p-tert-butylcatechol (CAS No. 98-29-3) administered in feed to F344/N rats and B6C3F1 mice. Dunnick J Toxic Rep Ser; 2002 Nov; (70):5-51. PubMed ID: 12592414 [TBL] [Abstract][Full Text] [Related]
19. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data. Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831 [TBL] [Abstract][Full Text] [Related]
20. Prediction of concentration-time profile and its inter-individual variability following the dermal drug absorption. Polak S; Ghobadi C; Mishra H; Ahamadi M; Patel N; Jamei M; Rostami-Hodjegan A J Pharm Sci; 2012 Jul; 101(7):2584-95. PubMed ID: 22517028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]