These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 24731979)
1. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description. Madsen JR; Akabani G Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979 [TBL] [Abstract][Full Text] [Related]
2. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Okada S; Murakami K; Incerti S; Amako K; Sasaki T Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679 [TBL] [Abstract][Full Text] [Related]
3. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539 [TBL] [Abstract][Full Text] [Related]
4. Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes. Francis Z; Incerti S; Capra R; Mascialino B; Montarou G; Stepan V; Villagrasa C Appl Radiat Isot; 2011 Jan; 69(1):220-6. PubMed ID: 20810287 [TBL] [Abstract][Full Text] [Related]
5. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Champion C; Le Loirec C Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099 [TBL] [Abstract][Full Text] [Related]
6. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
7. Physical models implemented in the GEANT4-DNA extension of the GEANT-4 toolkit for calculating initial radiation damage at the molecular level. Villagrasa C; Francis Z; Incerti S Radiat Prot Dosimetry; 2011 Feb; 143(2-4):214-8. PubMed ID: 21186212 [TBL] [Abstract][Full Text] [Related]
8. Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra. Lazarakis P; Bug MU; Gargioni E; Guatelli S; Rabus H; Rosenfeld AB Phys Med Biol; 2012 Mar; 57(5):1231-50. PubMed ID: 22330641 [TBL] [Abstract][Full Text] [Related]
9. Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code. Vassiliev ON Phys Med Biol; 2012 Feb; 57(4):1087-94. PubMed ID: 22297165 [TBL] [Abstract][Full Text] [Related]
10. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Champion C; Le Loirec C; Stosic B Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415 [TBL] [Abstract][Full Text] [Related]
11. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Margis S; Magouni M; Kyriakou I; Georgakilas AG; Incerti S; Emfietzoglou D Phys Med Biol; 2020 Feb; 65(4):045007. PubMed ID: 31935692 [TBL] [Abstract][Full Text] [Related]
12. Cross sections for bare and dressed carbon ions in water and neon. Liamsuwan T; Nikjoo H Phys Med Biol; 2013 Feb; 58(3):641-72. PubMed ID: 23318561 [TBL] [Abstract][Full Text] [Related]
13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
14. The Auger effect in physical and biological research. Nikjoo H; Emfietzoglou D; Charlton DE Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125 [TBL] [Abstract][Full Text] [Related]
15. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Kyriakou I; Incerti S; Francis Z Med Phys; 2015 Jul; 42(7):3870-6. PubMed ID: 26133588 [TBL] [Abstract][Full Text] [Related]
16. An energy-loss model for low- and intermediate-energy carbon projectiles in water. Liamsuwan T; Nikjoo H Int J Radiat Biol; 2012 Jan; 88(1-2):45-9. PubMed ID: 21913814 [TBL] [Abstract][Full Text] [Related]
17. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water. Wiklund K; Fernández-Varea JM; Lind BK Phys Med Biol; 2011 Apr; 56(7):1985-2003. PubMed ID: 21364263 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak. González-Muñoz G; Tilly N; Fernández-Varea JM; Ahnesjö A Phys Med Biol; 2008 Jun; 53(11):2857-75. PubMed ID: 18460751 [TBL] [Abstract][Full Text] [Related]
19. Dissociation energy of the water dimer from quantum Monte Carlo calculations. Gurtubay IG; Needs RJ J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902 [TBL] [Abstract][Full Text] [Related]
20. Development of a Monte Carlo track structure code for low-energy protons in water. Uehara S; Toburen LH; Nikjoo H Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]