BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24732021)

  • 1. Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion.
    Mir BA; Mewalal R; Mizrachi E; Myburg AA; Cowan DA
    Trends Biotechnol; 2014 May; 32(5):281-9. PubMed ID: 24732021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In planta expression of hyperthermophilic enzymes as a strategy for accelerated lignocellulosic digestion.
    Mir BA; Myburg AA; Mizrachi E; Cowan DA
    Sci Rep; 2017 Sep; 7(1):11462. PubMed ID: 28904370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
    Bhalla A; Bansal N; Kumar S; Bischoff KM; Sani RK
    Bioresour Technol; 2013 Jan; 128():751-9. PubMed ID: 23246299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects.
    Li X; Zheng Y
    Biotechnol Adv; 2017 Jul; 35(4):466-489. PubMed ID: 28351654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances of consolidated bioprocessing based on recombinant strategy].
    Zheng Z; Zhao M; Chen T; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1354-62. PubMed ID: 24432651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels.
    Taylor LE; Dai Z; Decker SR; Brunecky R; Adney WS; Ding SY; Himmel ME
    Trends Biotechnol; 2008 Aug; 26(8):413-24. PubMed ID: 18579242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable enzymes as biocatalysts in the biofuel industry.
    Yeoman CJ; Han Y; Dodd D; Schroeder CM; Mackie RI; Cann IK
    Adv Appl Microbiol; 2010; 70():1-55. PubMed ID: 20359453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation.
    Botha J; Mizrachi E; Myburg AA; Cowan DA
    Extremophiles; 2018 Jan; 22(1):1-12. PubMed ID: 29110088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries.
    Cobucci-Ponzano B; Strazzulli A; Iacono R; Masturzo G; Giglio R; Rossi M; Moracci M
    Enzyme Microb Technol; 2015 Oct; 78():63-73. PubMed ID: 26215346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoacidophilic proteins for biofuel production.
    Hess M
    Trends Microbiol; 2008 Sep; 16(9):414-9. PubMed ID: 18691890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.
    Gupta VK; Kubicek CP; Berrin JG; Wilson DW; Couturier M; Berlin A; Filho EXF; Ezeji T
    Trends Biochem Sci; 2016 Jul; 41(7):633-645. PubMed ID: 27211037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant genetic engineering to improve biomass characteristics for biofuels.
    Sticklen M
    Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals.
    Kim JY; Lee HW; Lee SM; Jae J; Park YK
    Bioresour Technol; 2019 May; 279():373-384. PubMed ID: 30685133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulosic biomass pretreatment using AFEX.
    Balan V; Bals B; Chundawat SP; Marshall D; Dale BE
    Methods Mol Biol; 2009; 581():61-77. PubMed ID: 19768616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of thermal-chemical conversion of lignocellulosic biomass in China.
    Ma L; Wang T; Liu Q; Zhang X; Ma W; Zhang Q
    Biotechnol Adv; 2012; 30(4):859-73. PubMed ID: 22306330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.