These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 24732029)
61. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona. Han Y; Chen G; Chen Y; Shen Z Bull Environ Contam Toxicol; 2015 Dec; 95(6):796-802. PubMed ID: 26310127 [TBL] [Abstract][Full Text] [Related]
62. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Benáková M; Ahmadi H; Dučaiová Z; Tylová E; Clemens S; Tůma J Environ Sci Pollut Res Int; 2017 Sep; 24(25):20705-20716. PubMed ID: 28714046 [TBL] [Abstract][Full Text] [Related]
63. Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Arena C; Figlioli F; Sorrentino MC; Izzo LG; Capozzi F; Giordano S; Spagnuolo V Ecotoxicol Environ Saf; 2017 Nov; 145():83-89. PubMed ID: 28708985 [TBL] [Abstract][Full Text] [Related]
64. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. de la Rosa G; Peralta-Videa JR; Montes M; Parsons JG; Cano-Aguilera I; Gardea-Torresdey JL Chemosphere; 2004 Jun; 55(9):1159-68. PubMed ID: 15081756 [TBL] [Abstract][Full Text] [Related]
65. [Mechanisms of heavy metal cadmium tolerance in plants]. Zhang J; Shu WS Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):1-8. PubMed ID: 16477124 [TBL] [Abstract][Full Text] [Related]
66. Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica juncea L.). Seth CS; Misra V; Chauhan LK Int J Phytoremediation; 2012 Jan; 14(1):1-13. PubMed ID: 22567690 [TBL] [Abstract][Full Text] [Related]
67. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Guo H; Chen H; Hong C; Jiang D; Zheng B Ecotoxicol Environ Saf; 2017 Jul; 141():119-128. PubMed ID: 28324818 [TBL] [Abstract][Full Text] [Related]
68. Physiological mechanisms of a wetland plant (Echinodorus osiris Rataj) to cadmium detoxification. Zhang P; Huang H; Liu W; Zhang C Environ Sci Pollut Res Int; 2017 Sep; 24(27):21859-21866. PubMed ID: 28776297 [TBL] [Abstract][Full Text] [Related]
69. Physiological Responses and Tolerance Mechanisms to Cadmium in Conyza canadensis. Zhou C; Zhang K; Lin J; Li Y; Chen N; Zou X; Hou X; Ma X Int J Phytoremediation; 2015; 17(1-6):280-9. PubMed ID: 25397987 [TBL] [Abstract][Full Text] [Related]
70. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. Schat H; Llugany M; Vooijs R; Hartley-Whitaker J; Bleeker PM J Exp Bot; 2002 Dec; 53(379):2381-92. PubMed ID: 12432030 [TBL] [Abstract][Full Text] [Related]
71. Effects of manganese stress on phenology and biomass allocation in Xanthium strumarium from metalliferous and non-metalliferous sites. Pan G; Zhang H; Liu P; Xiao Z; Li X; Liu W Ecotoxicol Environ Saf; 2019 May; 172():308-316. PubMed ID: 30716666 [TBL] [Abstract][Full Text] [Related]
72. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981 [TBL] [Abstract][Full Text] [Related]
73. Reactions to cadmium stress in a cadmium-tolerant variety of cabbage (Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Jinadasa N; Collins D; Holford P; Milham PJ; Conroy JP Environ Sci Pollut Res Int; 2016 Mar; 23(6):5296-306. PubMed ID: 26564184 [TBL] [Abstract][Full Text] [Related]
74. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo B; Liang YC; Zhu YG; Zhao FJ Environ Pollut; 2007 Jun; 147(3):743-9. PubMed ID: 17084493 [TBL] [Abstract][Full Text] [Related]
75. Phytochelatin-Mediated Cultivar-Dependent Cd Accumulations of He CT; Wang XS; Hu XX; Yuan J; Zhang QH; Tan XT; Wang YF; Tan X; Yang ZY J Agric Food Chem; 2024 Jan; 72(1):715-725. PubMed ID: 38123485 [TBL] [Abstract][Full Text] [Related]
76. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Shi G; Liu C; Cai Q; Liu Q; Hou C Bull Environ Contam Toxicol; 2010 Sep; 85(3):256-63. PubMed ID: 20640847 [TBL] [Abstract][Full Text] [Related]
77. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Javed MT; Akram MS; Tanwir K; Javed Chaudhary H; Ali Q; Stoltz E; Lindberg S Ecotoxicol Environ Saf; 2017 Jul; 141():216-225. PubMed ID: 28349873 [TBL] [Abstract][Full Text] [Related]
78. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress. Wang X; Shi Y; Chen X; Huang B Environ Sci Pollut Res Int; 2015 Nov; 22(21):16590-9. PubMed ID: 26081776 [TBL] [Abstract][Full Text] [Related]
79. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Bankaji I; Caçador I; Sleimi N Environ Sci Pollut Res Int; 2015 Sep; 22(17):13058-69. PubMed ID: 25925143 [TBL] [Abstract][Full Text] [Related]
80. Physiological responses of the hybrid larch (Larix × eurolepis Henry) to cadmium exposure and distribution of cadmium in plantlets. Bonet A; Lelu-Walter MA; Faugeron C; Gloaguen V; Saladin G Environ Sci Pollut Res Int; 2016 May; 23(9):8617-26. PubMed ID: 26797952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]